User Documentation for ARKODE v6.2.1
SUNDIALS v7.2.1

Daniel R. Reynolds!, David J. Gardner?, Carol S. Woodward?, Rujeko Chinomona?®, and Cody J. Balos?
' Department of Mathematics, Southern Methodist University
2Center for Applied Scientific Computing, Lawrence Livermore National Laboratory

3Department of Mathematics, Temple University

December 20, 2024

aials

<
S

(Vo)

LLNL-SM-668082



DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States government. Neither
the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any
warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or useful-
ness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by
the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors ex-
pressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National
Security, LLC, and shall not be used for advertising or product endorsement purposes.

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National
Laboratory under Contract DE-AC52-07NA27344.

Approved for public release; further dissemination unlimited



CONTRIBUTORS

The SUNDIALS library has been developed over many years by a number of contributors. The current SUNDIALS
team consists of Cody J. Balos, David J. Gardner, Alan C. Hindmarsh, Daniel R. Reynolds, and Carol S. Woodward.
We thank Radu Serban for significant and critical past contributions.

Other contributors to SUNDIALS include: James Almgren-Bell, Lawrence E. Banks, Peter N. Brown, George Byrne,
Rujeko Chinomona, Scott D. Cohen, Aaron Collier, Keith E. Grant, Steven L. Lee, Shelby L. Lockhart, John Loffeld,
Daniel McGreer, Yu Pan, Slaven Peles, Cosmin Petra, Steven B. Roberts, H. Hunter Schwartz, Jean M. Sexton, Dan
Shumaker, Steve G. Smith, Shahbaj Sohal, Allan G. Taylor, Hilari C. Tiedeman, Chris White, Ting Yan, and Ulrike M.
Yang.






Contents

1 Introduction

1.1 Changes to SUNDIALS inrelease 6.2.1 . . . . . . . . . . . o i i e
1.2 Reading this User Guide . . . . . . . . . . . . e
1.3 SUNDIALS License and Notices . . . . . . . . . . o o v ittt e ettt e e e
2 Mathematical Considerations
2.1  Adaptive single-stepmethods . . . . . . .. L e
2.2 Interpolation . . . . . .. e e e e e e e e e e e e e e
2.3  ARKStep — Additive Runge—Kuttamethods . . . . . . .. ... ... ... . o
2.4 ERKStep — Explicit Runge—Kuttamethods . . . . . ... ... ... ... ... ...
2.5 ForcingStep — Forcingmethod . . . . . . . . ... L
2.6 LSRKStep — Low-Storage Runge—Kuttamethods . . . . . . .. ... ... ... ... ... .....
2.7  MRIStep — Multirate infinitesimal stepmethods . . . . . . . . . ... ... Lo oL,
2.8 SplittingStep — Operator splitting methods . . . . . . . . . .. .. L .
2.9  SPRKStep — Symplectic Partitioned Runge—Kuttamethods . . . . . . ... .. ... ... .. ....
2.10 EIror nOTMS . . . . o o v ot e e e e e e e e e e e e e e e e e e e
2.11 Timestep adaptivity . . . . . . . . o o L e e e e e e
2.12 Initial step size estimation . . . . . . . . . .. e e e e e e e e e e e e e
2.13 Explicit stability . . . . . . . . e e e e e e e e e
2.14 Fixed time Stepping . . . . . . . . . ... e e e e e
2.15 Algebraic sOlvers . . . . . . . . e e
2.16 Rootfinding . . . . . . . . . e e
2.17 Inequality Constraints . . . . . . . . o v v ittt e e e e e e e e e e e
2.18 Relaxation Methods . . . . . . . . . . . . e
3 Code Organization
4 Getting Started
4.1 DataTypes . . . . o o v i e e e e e e e e e e e e e e
4.2  The SUNContext TYpe . . . . . o o o v i i i e e e e e e e e e e
43 Error Checking . . . . . . . . o e e e e e e e e e
4.4  Status and Error Logging . . . . . . . . .. e e e e e e e e e
4.5 Performance Profiling . . . . . . . . . L
4.6  Getting Version Information . . . . . . . . oL L
47 Fortran Interface . . . . . . . . . . e e e e e e e
4.8  Features for GPU Accelerated Computing . . . . . . . . . . ... . o e
5 Using ARKODE
5.1 Accesstolibrary and header files . . . . . . . . ... ...
5.2 A skeleton of the user’s main program . . . . . . . . . . it e e e e e e e e e e e e e e
5.3 ARKODE User-callable functions . . . . . . . . . . . ... . e
54 User-supplied functions . . . . . . . . . . e e e
5.5 Relaxation Methods . . . . . . . . L e e e e e

D~ B~ W

10
11
12
12
13
16
17
18
19
22
24
24
25
35
36
36

39

41
42
44
49
52
57
61
61
70




10

5.6
5.7
5.8
59
5.10
5.11
5.12
5.13

Preconditioner modules . . . . . . ...
Using the ARKStep time-stepping module . . . . . . . . . .. . . e
Using the ERKStep time-steppingmodule . . . . . . . . . . ... .
Using the ForcingStep time-steppingmodule . . . . . . . .. ... ... L 0oL,
Using the LSRKStep time-stepping module . . . . . . .. . .. ... L o Lo
Using the MRIStep time-steppingmodule . . . . . . . .. .. ... . oo
Using the SplittingStep time-steppingmodule . . . . . . . . . . . . ... . o o
Using the SPRKStep time-steppingmodule . . . . . . . . . ... ... . o

Butcher Table Data Structure

6.1

ARKodeButcherTable functions . . . . . . . . . . . . . . .

SPRK Method Table Structure

7.1

ARKodeSPRKTable functions . . . . . . . . . . 0 o i e e e e e e e

Vector Data Structures

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12
8.13
8.14
8.15
8.16
8.17
8.18
8.19
8.20

Description of the NVECTOR Modules . . . . . . . . .. . o i it
Description of the NVECTOR operations . . . . . . . . . .. i,
NVECTOR functions required by ARKODE . . . . ... ... ... ... ... . ... . ....
The NVECTOR_SERIAL Module . . . . . . .. ... .. . .. . i
The NVECTOR_PARALLEL Module . . . .. .. .. .. ... it
The NVECTOR_OPENMP Module . . . . . .. ... . e e
The NVECTOR_PTHREADS Module . . . .. .. .. ... it
The NVECTOR_PARHYPModule . . . . ... ... ... . ... .
The NVECTOR_PETSCModule . . . .. ... ... ... . .. i
The NVECTOR_CUDA Module . . . . . . . . . ettt e e e e e e
The NVECTOR_HIP Module . . . . . . .. . e e e e e e
The NVECTOR_SYCL Module . . . . . . . . . e e e e e i e
The NVECTOR_RAJA Module . . . . . . . .. o et e i e
The NVECTOR_KOKKOS Module . . . . . .. ... .. . . i
The NVECTOR_OPENMPDEV Module . . . . ... ... ... .. .. .. . ... . .......
The NVECTOR_TRILINOS Module . . . . .. .. .. . ettt
The NVECTOR_MANYVECTOR Module . . . . . ... ... .. . . i
The NVECTOR_MPIMANYVECTOR Module . . . .. ... ... ... ... ... . .......
The NVECTOR_MPIPLUSX Module . . . . . . ... .. . . i
NVECTOR Examples . . . . . . . oo o e e e e e e e e e e e e e

Matrix Data Structures

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
9.10
9.11
9.12
9.13

Description of the SUNMATRIX Modules . . . . . ... ... ... ... ... ... . ....
Description of the SUNMATRIX operations . . . . . .. .. ... ... ... ... .....
The SUNMATRIX_DENSE Module . . . . ... ... ... it
The SUNMATRIX_MAGMADENSEModule . . ... ... ... ... .. . . . . . .. ......
The SUNMATRIX_ONEMKLDENSEModule . . . . .. ... ... ... . . ... . ........
The SUNMATRIX_BAND Module . . . . . . .. ... ... e
The SUNMATRIX_CUSPARSEModule . . . . . ... ... ... . . . . . ...
The SUNMATRIX_SPARSE Module . . . . . . . .. ... i
The SUNMATRIX_SLUNRLOC Module . . . . . ... ... .. i
The SUNMATRIX_GINKGO Module . . . . .. ... ... ... i
The SUNMATRIX_KOKKOSDENSE Module . . . ... ... ... ... . . ... . .. ......
SUNMATRIX Examples . . . . . . . o o o e e e e e e e e e e e e e e e
SUNMATRIX functionsused by ARKODE . . . . . .. ... .. . ... ... . .. ........

Linear Algebraic Solvers

10.1
10.2

The SUNLinearSolver APL . . . . . . . . . . . e e e e
ARKODE SUNLinearSolverinterface . . . . . . . . . . . . . . 0 o o i e

ii



11

12

13

14

15

16

10.3 The SUNLinSol_Band Module . . . . . . . . . . . . e e 551

10.4 The SUNLinSol_Dense Module . . . . . . . . . . e e e 553
10.5 The SUNLinSol KLUModule . . . ... ... .. ... e 554
10.6 The SUNLinSol LapackBand Module . . . . ... ... ... .. ... . ... . . ...... 558
10.7 The SUNLinSol_LapackDense Module . . . . . . . .. ... .. .. . . ... 559
10.8 The SUNLinSol_MagmaDense Module . . . . . . . . ... ... .. ... 561
10.9 The SUNLinSol_OneMklDense Module . . . . . . . . . . . . . 0 e e it i 563
10.10 The SUNLinSol PCGModule . . . . . . . . . . e e e e 564
10.11 The SUNLinSol_SPBCGS Module . . . . . . . . .. . ettt 568
10.12 The SUNLinSol_SPFGMR Module . . . . . . . . . . . . .. i e 571
10.13 The SUNLinSol_SPGMR Module . . . . . . . . . ... s e 575
10.14 The SUNLinSol_SPTFQMR Module . . . . . . . . . . . . ... . . i .. 579
10.15 The SUNLinSol_SuperLUDIST Module . . . . . . . . . . .. . . . . it 582
10.16 The SUNLinSol_SuperLUMT Module . . . . . .. .. ... ... .. . ... .. .... 585
10.17 The SUNLinSol_cuSolverSp_batchQR Module . . . . . . . . ... ... ... .. ... ... 588
10.18 The SUNLINEARSOLVER_GINKGO Module . . . . . . . ... ... .. 590
10.19 The SUNLINEARSOLVER_KOKKOSDENSE Module . . . . ... ... ... ... ........ 593
10.20 SUNLinearSolver Examples . . . . . . . . . o 0 0 i e e e e e e e e e e 594
Nonlinear Algebraic Solvers 597
11.1 The SUNNonlinearSolver API . . . . . . . . . . . . . e 597
11.2 ARKODE SUNNonlinearSolver interface . . . . . . . . . ... ... ... ... ... . .... 606
11.3 The SUNNonlinSol_Newton implementation . . . . . . . ... ... ... ... ... ....... 612
11.4 The SUNNonlinSol_FixedPoint implementation . . . . .. . ... ... ... ... ......... 614
11.5 The SUNNonlinSol_PetscSNES implementation . . . . . . .. .. ... ... ... .. ....... 618
Time Step Adaptivity Controllers 621
12.1 The SUNAdaptController APT . . . . . . . . . . ... . 621
12.2 The SUNAdaptController_Soderlind Module . . . . . . .. ... ... ... ... ... ...... 627
12.3 The SUNAdaptController ImExGus Module . . . . ... ... ... ... ... ... . ....... 632
12.4 The SUNAdaptController MRIHTol Module . . . . . .. ... ... ... .. ... ... ...... 633
Stepper Data Structure 637
13.1 The SUNStepper APL . . . . . . . e e 637
13.2 TImplementing a SUNStepper . . . . . . . o o i i v i e e e e e e e e 644
Tools for Memory Management 645
14.1 The SUNMemoryHelper APL . . . . . . . . . . e e e e e 645
14.2 The SUNMemoryHelper_Cuda Implementation . . . . . ... ... ... . ............ 650
14.3 The SUNMemoryHelper_Hip Implementation . . . . . . ... ... ... .. ... .. ....... 652
14.4 The SUNMemoryHelper_Sycl Implementation . . . . . .. . ... ... ... ... .. ....... 654
Acquiring SUNDIALS 657
Building and Installing with CMake 659
16.1 Configuring, building, and installing on Unix-like systems . . . . . . ... .. ... ... .. .... 659
16.2 Configuration Options . . . . . . . . o i e e e e e e e e e e e e e e e e 663
16.3 Configuration examples . . . . . . . . . L 678
16.4 Working with external Libraries . . . . . . . . . . .. . L 678
16.5 Testing the build and installation . . . . . . . . . . ... L 683
16.6 Building and Running Examples . . . . . . . . . . . . e e 683
16.7 Configuring, building, and installingon Windows . . . . . . . ... .. ... ... ... . ..., 684
16.8 Installed libraries and exported header files . . . . . . .. ... ... . ... ... ... 684
16.9 Using SUNDIALS inyour project . . . . . . . . . . . oo ittt e 685
16.10 Using SUNDIALS as a Third Party Library in other CMake Projects . . . . . . ... .. ... ... 685

iii



17

18

19

20

16.11 Table of SUNDIALS libraries and header files . . . . . . . .. . . ... . ... . .. . ... .... 686

16.12 Installing SUNDIALS on HPC Clusters . . . . . . . . . . . it ittt et e 689
16.13 Building with SUNDIALS Addons . . . . . . . . . . e e e e e e e 691
ARKODE Constants 693
Butcher Tables 701
18.1 Explicit Butchertables . . . . . . . . . . . L 702
18.2 TImplicit Butchertables . . . . . . . . . . . . o e e e e e e e e 722
18.3 Additive Butcher tables . . . . . . . . .. e 743
18.4 Symplectic Partitioned Butcher tables . . . . . . . .. ... ... oL o 743
Release History 747
Changelog 749
20.1 Changes to SUNDIALS inrelease 7.2.1 . . . . . . . . . . . i i e 749
20.2 Changes to SUNDIALS inrelease 7.2.0 . . . . . . . . . o i i i i e e e e e 749
20.3 Changes to SUNDIALS inrelease 7.1.1 . . . . . . . . . . o o i e 752
20.4 Changes to SUNDIALS inrelease 7.1.0 . . . . . . . . . . . . ... o 752
20.5 Changes to SUNDIALS inrelease 7.0.0 . . . . . . . . . . o o o 754
20.6 Changes to SUNDIALS inrelease 6.7.0 . . . . . . . . . . . it 756
20.7 Changes to SUNDIALS inrelease 6.6.2 . . . . . . . . . 0 0 v i i i it e it e e e e 757
20.8 Changes to SUNDIALS inrelease 6.6.1 . . . . . . . . . . . . o i e e 757
20.9 Changes to SUNDIALS inrelease 6.6.0 . . . . . . . . . . . .. ... . 758
20.10 Changes to SUNDIALS inrelease 6.5.1 . . . . . . . . .. .. ... . ... 758
20.11 Changes to SUNDIALS inrelease 6.5.0 . . . . . . . . . . ... 759
20.12 Changes to SUNDIALS inrelease 6.4.1 . . . . . . . . . . . e 760
20.13 Changes to SUNDIALS inrelease 6.4.0 . . . . . . . . . . i i i ittt e e e e 760
20.14 Changes to SUNDIALS inrelease 6.3.0 . . . . . . . . . . . . .. 761
20.15 Changes to SUNDIALS inrelease 6.2.0 . . . . . . . . .. . ... oo 761
20.16 Changes to SUNDIALS inrelease 6.1.1 . . . . . . . . . .. . 764
20.17 Changes to SUNDIALS inrelease 6.1.0 . . . . . . . . . . . i 764
20.18 Changes to SUNDIALS inrelease 6.0.0 . . . . . . . . . . . . i et e e 765
20.19 Changes to SUNDIALS inrelease 5.8.0 . . . . . . . . . . . o i e 771
20.20 Changes to SUNDIALS inrelease 5.7.0 . . . . . . . . . . o . o i i e 772
20.21 Changes to SUNDIALS inrelease 5.6.1 . . . . . . . . . . . o o e 772
20.22 Changes to SUNDIALS inrelease 5.6.0 . . . . . . . . . . . i 772
20.23 Changes to SUNDIALS inrelease 5.5.0 . . . . . . . . . . i i it e e e 773
20.24 Changes to SUNDIALS inrelease 5.4.0 . . . . . . . . . 0 i i ittt e e e e 773
20.25 Changes to SUNDIALS inrelease 5.3.0 . . . . . . . . . . . .. e 775
20.26 Changes to SUNDIALS inrelease 5.2.0 . . . . . . . . .. .. ... oo 776
20.27 Changes to SUNDIALS inrelease 5.1.0 . . . . . . . . . . . o o e 777
20.28 Changes to SUNDIALS inrelease 5.0.0 . . . . . . . . . . . i 778
20.29 Changes to SUNDIALS inrelease 4.1.0 . . . . . . . . . . . o v i e e e e 781
20.30 Changes to SUNDIALS inrelease 4.0.2 . . . . . . . . . . . i 782
20.31 Changes to SUNDIALS inrelease 4.0.1 . . . . . . . . .. .. ... ... 782
20.32 Changes to SUNDIALS inrelease 4.0.0 . . . . . . . . . . . o o 782
20.33 Changes to SUNDIALS inrelease 3.2.1 . . . . . . . . . . o e 785
20.34 Changes to SUNDIALS inrelease 3.2.0 . . . . . . . . . 0 i i it e e e e 785
20.35 Changes to SUNDIALS inrelease 3.1.2 . . . . . . . . . o i i it i e e 786
20.36 Changes to SUNDIALS inrelease 3.1.1 . . . . . . . . ... .. . ... 786
20.37 Changes to SUNDIALS inrelease 3.1.0 . . . . . . . . .. .. ... o oo 787
20.38 Changes to SUNDIALS inrelease 3.0.0 . . . . . . . . . . . o i 787
20.39 Changes to SUNDIALS inrelease 2.7.0 . . . . . . . . . 0 i i i i e e e e e e e 789
20.40 Changes to SUNDIALS inrelease 2.6.2 . . . . . . . . . o v i i it e it e e e e 791

iv



20.41 Changes to SUNDIALS in release 2.6.1
20.42 Changes to SUNDIALS inrelease 2.6.0 . . . . . . . . . . . . i i ittt i e e 792

20.43 Changes to SUNDIALS inrelease 2.5.0 . . . . . . . . . o i i ittt e e e 793
20.44 Changes to SUNDIALS inrelease 2.4.0 . . . . . . . . .. . .. 794
20.45 Changes to SUNDIALS inrelease 2.3.0 . . . . . . . . .. .. .. o 795
20.46 Changes to SUNDIALS inrelease 2.2.0 . . . . . . . . . . . ... e 795

20.47 Changes to SUNDIALS inrelease 2.1.1 . . . . . . . . . . i it e e e e 796

20.48 Changes to SUNDIALS inrelease 2.1.0 . . . . . . . . . . . . 0 i e e e 796
20.49 Changes to SUNDIALS inrelease 2.0.2 . . . . . . . . . . . . e 796
20.50 Changes to SUNDIALS inrelease 2.0.1 . . . . . . . ... .. ... . oL, 796
20.51 Changes to SUNDIALS inrelease 2.0.0 . . . . . . . . . . ... o e 797
Bibliography 799
Index 807







User Documentation for ARKODE, v6.2.1

This is the documentation for ARKODE, an adaptive step time integration package for stiff, nonstiff and mixed
stiff/nonstiff systems of ordinary differential equations (ODEs) using Runge—Kutta (i.e., one-step, multi-stage) meth-
ods. The ARKODE solver is a component of the SUNDIALS suite of nonlinear and differential/algebraic equation
solvers. It is designed to have a similar user experience to the CVODE solver, including user modes to allow adaptive
integration to specified output times, return after each internal step and root-finding capabilities, and for calculations in
serial, using shared-memory parallelism (e.g., via OpenMP, CUDA, Raja, Kokkos) or distributed-memory parallelism
(via MPI). The default integration and solver options should apply to most users, though control over nearly all internal
parameters and time adaptivity algorithms is enabled through optional interface routines.

ARKODE is written in C, with C++ and Fortran interfaces.

ARKODE is developed by Southern Methodist University and Lawrence Livermore National Security, with support
by the US Department of Energy, Office of Science.

Contents 1


https://computing.llnl.gov/projects/sundials
https://computing.llnl.gov/casc/sundials/description/description.html#descr_cvode
https://www.smu.edu
https://www.llnl.gov
http://www.doe.gov
https://www.energy.gov/science/office-science

User Documentation for ARKODE, v6.2.1

2 Contents



Chapter 1

Introduction

The ARKODE infrastructure provides adaptive-step time integration modules for stiff, nonstiff and mixed stiff/nonstiff
systems of ordinary differential equations (ODEs). ARKODE itself is structured to support a wide range of one-step (but
multi-stage) methods, allowing for rapid development of parallel implementations of state-of-the-art time integration
methods. At present, ARKODE is packaged with four time-stepping modules, ARKStep, ERKStep, SPRKStep, and
MRIStep.

ARKStep supports ODE systems posed in split, linearly-implicit form,

M)y =Pty + 1 (ty),  ylto) = o, (1.1)

where ¢ is the independent variable, y is the set of dependent variables (in R™V), M is a user-specified, nonsingular
operator from R to R”, and the right-hand side function is partitioned into up to two components:

 fE(t,y) contains the “nonstiff” time scale components to be integrated explicitly, and
s f1(t,y) contains the “stiff”” time scale components to be integrated implicitly.

Either of these operators may be disabled, allowing for fully explicit, fully implicit, or combination implicit-explicit
(ImEx) time integration.

The algorithms used in ARKStep are adaptive- and fixed-step additive Runge—Kutta methods. Such methods are defined
through combining two complementary Runge—Kutta methods: one explicit (ERK) and the other diagonally implicit
(DIRK). Through appropriately partitioning the ODE right-hand side into explicit and implicit components (1.1), such
methods have the potential to enable accurate and efficient time integration of stiff, nonstiff, and mixed stiff/nonstiff
systems of ordinary differential equations. A key feature allowing for high efficiency of these methods is that only
the components in £ (¢, 3y) must be solved implicitly, allowing for splittings tuned for use with optimal implicit solver
algorithms.

This framework allows for significant freedom over the constitutive methods used for each component, and ARKODE is
packaged with a wide array of built-in methods for use. These built-in Butcher tables include adaptive explicit methods
of orders 2-9, adaptive implicit methods of orders 2-5, and adaptive ImEx methods of orders 2-5.

ERKStep focuses specifically on problems posed in explicit form,

v =f(ty), y(to) = Yo- (1.2)

allowing for increased computational efficiency and memory savings. The algorithms used in ERKStep are adaptive-
and fixed-step explicit Runge—Kutta methods. As with ARKStep, the ERKStep module is packaged with adaptive
explicit methods of orders 2-9.

SPRKStep focuses on Hamiltonian systems posed in the form,

H(t,p,q) =T(t,p) +V(tq)




User Documentation for ARKODE, v6.2.1

. av(t,q) . orT'(t,p)
— t’ — —, — t’ = - s 1 .3
p= fi(t,q) 9 q= f2(t,p) o (1.3)
allowing for conservation of quadratic invariants.
MRIStep focuses specifically on problems posed in additive form,
g=foty) + 1ty + 1 (y),  ylto) = o (1.4)

where here the right-hand side function is additively split into three components:

 fE(t,y) contains the “slow-nonstiff” components of the system (this will be integrated using an explicit method
and a large time step h°),

* fI(t,y) contains the “slow-stiff” components of the system (this will be integrated using an implicit method and
a large time step 1), and

» fF(t,y) contains the “fast” components of the system (this will be integrated using a possibly different method
than the slow time scale and a small time step h!" < ).

For such problems, MRIStep provides fixed-step slow step multirate infinitesimal step (MIS), multirate infinitesimal
GARK (MRI-GARK), and implicit-explicit MRI-GARK (IMEX-MRI-GARK) methods, allowing for evolution of the
problem (1.4) using multirate methods having orders of accuracy 2-4.

For ARKStep or MRIStep problems that include nonzero implicit term f7(¢,y), the resulting implicit system (assumed
nonlinear, unless specified otherwise) is solved approximately at each integration step, using a SUNNonlinearSolver
module, supplied either by the user or from the underlying SUNDIALS infrastructure. For nonlinear solver algorithms
that internally require a linear solver, ARKODE may use a variety of SUNLinearSolver modules provided with SUN-
DIALS, or again may utilize a user-supplied module.

1.1 Changes to SUNDIALS in release 6.2.1

** New Features and Enhancements **

Unit tests were separated from examples. To that end, the following directories were moved out of the examples/
directory to the test/unit_tests directory: nvector, sunmatrix, sunlinsol, and sunnonlinsol.

Bug Fixes

Fixed a bug in ARKStep where an extra right-hand side evaluation would occur each time step when enabling the
ARKodeSetAutonomous () option and using an IMEX method where the DIRK table has an implicit first stage and is
not stiffly accurate.

For changes in prior versions of SUNDIALS see §20.

1.2 Reading this User Guide

This user guide is a combination of general usage instructions and specific example programs. We expect that some
readers will want to concentrate on the general instructions, while others will refer mostly to the examples, and the
organization is intended to accommodate both styles.

The structure of this document is as follows:

* In the next section we provide a thorough presentation of the underlying mathematical algorithms used within
the ARKODE family of solvers.

¢ We follow this with an overview of how the source code for ARKODE is organized.

4 Chapter 1. Introduction



User Documentation for ARKODE, v6.2.1

* The largest section follows, providing a full account of how to use ARKODE within C and C++ applications,
including any instructions that are specific to a given time-stepping modules, ARKStep, ERKStep, or MRIStep.
This section then includes additional information on how to use ARKODE from applications written in Fortran,
as well as information on how to leverage GPU accelerators within ARKODE.

¢ A much smaller section follows, describing ARKODE’s Butcher table structure, that is used by both ARKStep
and ERKStep.

» Subsequent sections discuss shared SUNDIALS features that are used by ARKODE: vector data structures,
matrix data Structures, linear solver data Structures, nonlinear solver data Structures, memory managemenl
utilities, and the installation procedure.

* The final sections catalog the full set of ARKODE constants, that are used for both input specifications and return
codes, and the full set of Butcher tables that are packaged with ARKODE.

1.3 SUNDIALS License and Notices

All SUNDIALS packages are released open source, under the BSD 3-Clause license. The only requirements of the
license are preservation of copyright and a standard disclaimer of liability. The full text of the license and an additional
notice are provided below and may also be found in the LICENSE and NOTICE files provided with all SUNDIALS
packages.

Note

If you are using SUNDIALS with any third party libraries linked in (e.g., LAPACK, KLU, SuperLU_MT, PETSc,
or hypre), be sure to review the respective license of the package as that license may have more restrictive terms
than the SUNDIALS license. For example, if someone builds SUNDIALS with a statically linked KLU, the build is
subject to terms of the more-restrictive LGPL license (which is what KLU is released with) and not the SUNDIALS
BSD license anymore.

1.3.1 BSD 3-Clause License

Copyright (c) 2002-2024, Lawrence Livermore National Security and Southern Methodist University.
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the fol-
lowing conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

* Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “ASIS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED

1.3. SUNDIALS License and Notices 5



User Documentation for ARKODE, v6.2.1

TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

1.3.2 Additional Notice
This work was produced under the auspices of the U.S. Department of Energy by Lawrence Livermore National Lab-
oratory under Contract DE-AC52-07NA27344.

This work was prepared as an account of work sponsored by an agency of the United States Government. Neither
the United States Government nor Lawrence Livermore National Security, LLC, nor any of their employees makes
any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe
privately owned rights.

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or Lawrence Livermore National Security, LLC.

The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Gov-
ernment or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement
purposes.

1.3.3 SUNDIALS Release Numbers

LLNL-CODE-667205 (ARKODE)
UCRL-CODE-155951 (CVODE)
UCRL-CODE-155950 (CVODES)
UCRL-CODE-155952 (IDA)
UCRL-CODE-237203 (IDAS)
LLNL-CODE-665877 (KINSOL)

6 Chapter 1. Introduction



Chapter 2

Mathematical Considerations

ARKODE solves ODE initial value problems (IVP) in RY posed in the form

Here, ¢ is the independent variable (e.g. time), and the dependent variables are given by y € RV, where we use the
notation ¢ to denote dy/dt.

For each value of ¢, M (t) is a user-specified linear operator from R” — R This operator is assumed to be nonsingular
and independent of y. For standard systems of ordinary differential equations and for problems arising from the spatial
semi-discretization of partial differential equations using finite difference, finite volume, or spectral finite element
methods, M is typically the identity matrix, I. For PDEs using standard finite-element spatial semi-discretizations,
M is typically a well-conditioned mass matrix that is fixed throughout a simulation (or at least fixed between spatial
rediscretization events).

The ODE right-hand side is given by the function f(¢,y) — in general we make no assumption that the problem (2.1)
is autonomous (i.e., f = f(y)) or linear (f = Ay). In general, the time integration methods within ARKODE support
additive splittings of this right-hand side function, as described in the subsections that follow. Through these splittings,
the time-stepping methods currently supplied with ARKODE are designed to solve stiff, nonstiff, mixed stiff/nonstiff,
and multirate problems. As per Ascher and Petzold [12], a problem is “stiff”’ if the stepsize needed to maintain stability
of the forward Euler method is much smaller than that required to represent the solution accurately.

In the sub-sections that follow, we elaborate on the numerical methods utilized in ARKODE. We first discuss the “single-
step” nature of the ARKODE infrastructure, including its usage modes and approaches for interpolated solution output.
We then discuss the current suite of time-stepping modules supplied with ARKODE, including

* ARKStep for additive Runge—Kutta methods

» ERKStep that is optimized for explicit Runge—Kutta methods
* ForcingStep for a forcing method

* LSRKStep that supports low-storage Runge—Kutta methods

* MRIStep for multirate infinitesimal step (MIS), multirate infinitesimal GARK (MRI-GARK), and implicit-explicit
MRI-GARK (IMEX-MRI-GARK) methods

* SplittingStep for operator splitting methods
* SPRKStep for symplectic partitioned Runge—Kutta methods

We then discuss the adaptive temporal error controllers shared by the time-stepping modules, including discussion of
our choice of norms for measuring errors within various components of the solver.




User Documentation for ARKODE, v6.2.1

We then discuss the nonlinear and linear solver strategies used by ARKODE for solving implicit algebraic systems
that arise in computing each stage and/or step: nonlinear solvers, linear solvers, preconditioners, error control within
iterative nonlinear and linear solvers, algorithms for initial predictors for implicit stage solutions, and approaches for
handling non-identity mass-matrices.

We conclude with a section describing ARKODE’s rootfinding capabilities, that may be used to stop integration of a
problem prematurely based on traversal of roots in user-specified functions.

2.1 Adaptive single-step methods

The ARKODE infrastructure is designed to support single-step, IVP integration methods, i.e.

Yn = ©(Yn—1,hn)

where y,,—1 is an approximation to the solution y(¢,,—1), ¥, is an approximation to the solution y(t,,), t, = t,—1 + hnp,
and the approximation method is represented by the function (.

The choice of step size h,, is determined by the time-stepping method (based on user-provided inputs, typically accuracy
requirements). However, users may place minimum/maximum bounds on h,, if desired.

ARKODE may be run in a variety of “modes”:

* NORMAL - The solver will take internal steps until it has just overtaken a user-specified output time, tqy, in
the direction of integration, i.e. t,—1 < tou < t, for forward integration, or ¢t,, < toy < t,—1 for backward
integration. It will then compute an approximation to the solution y(t.,) by interpolation (using one of the dense
output routines described in the section §2.2).

* ONE-STEP - The solver will only take a single internal step y,—1 — ¥, and then return control back to the
calling program. If this step will overtake %, then the solver will again return an interpolated result; otherwise
it will return a copy of the internal solution y,,.

¢ NORMAL-TSTOP - The solver will take internal steps until the next step will overtake #,,. It will then limit
this next step so that t,, = t,—1 + h,, = tou, and once the step completes it will return a copy of the internal
solution ¥,,.

¢ ONE-STEP-TSTOP - The solver will check whether the next step will overtake %, — if not then this mode is
identical to “one-step” above; otherwise it will limit this next step so that ¢,, = ¢,,_1 + h,, = tou. In either case,
once the step completes it will return a copy of the internal solution y,,.

We note that interpolated solutions may be slightly less accurate than the internal solutions produced by the solver.
Hence, to ensure that the returned value has full method accuracy one of the “tstop” modes may be used.

2.2 Interpolation

As mentioned above, the ARKODE supports interpolation of solutions y(t.,) and derivatives y(d)(tom), where oy
occurs within a completed time step from ¢,,_; — t,,. Additionally, this module supports extrapolation of solutions
and derivatives for ¢ outside this interval (e.g. to construct predictors for iterative nonlinear and linear solvers). To this
end, ARKODE currently supports construction of polynomial interpolants p,(¢) of polynomial degree up to ¢ = 5,
although users may select interpolants of lower degree.

ARKODE provides two complementary interpolation approaches: “Hermite” and “Lagrange”. The former approach
has been included with ARKODE since its inception, and is more suitable for non-stiff problems; the latter is a more
recent approach that is designed to provide increased accuracy when integrating stiff problems. Both are described in
detail below.

8 Chapter 2. Mathematical Considerations



User Documentation for ARKODE, v6.2.1

2.2.1 Hermite interpolation module

For non-stiff problems, polynomial interpolants of Hermite form are provided. Rewriting the IVP (2.1) in standard
form,

Y= f(t,y), y(tO) = Yo-

we typically construct temporal interpolants using the data {y,,,_l, fn_l, Yns fn}, where here we use the simplified

notation fk to denote f (tx, yr). Defining a normalized “time” variable, 7, for the most-recently-computed solution
interval t,,_1 — t,, as

we then construct the interpolants p,(t) as follows:
* ¢ = 0: constant interpolant

n—1 1 Yn
P (T) Yn—1 Y )
*q= 1: linear Lagrange interpolant

Pi(T) = —TYn1+ (1 +7T)Yn.
* ¢ = 2: quadratic Hermite interpolant
p2(7) = T2 Y1 + (L= 7))y + (7 +7%) i
* q = 3: cubic Hermite interpolant
ps(r) = (372 + 2% g1 + (1= 372 = 27%) g + b (72 + 72) o1 + hn(7 + 272+ 7°) fo.
* q = 4: quartic Hermite interpolant

h .
pa(T) = (=672 — 167 — 974 yp_1 + (1 + 672 + 167> + 97%) y,, + f(—57’2 — 1473 — 97'4) fn_1

27hy,
4

+hn(7-+27—2+7-3) fn"’ (_7-4 —27° _7—2) fm

. . B, 1
where f, = f <tn 3P (—3) ) We point out that interpolation at this degree requires an additional

evaluation of the full right-hand side function f(¢, ), thereby increasing its cost in comparison with ps (¢).
* g = 5: quintic Hermite interpolant

ps(7) = (547° +1357* + 1107° 4 307°) yp—1 + (1 — 547° — 1357* — 1107° — 307°) yn,

h

n 5 2 N hn 5 2 A
+ 2 (277° + 6371 + 4973 +137%) f,_1 + 1(2770 + 727 + 6773 + 2672 + 1) £,

4
B oo 5 A f R
+ Z(81T° + 18974 + 13573 + 2772) f, + Z(sw + 21671 4 18973 + 5472) £,

L hin 1 . 2h,, 2
where f, = f (tn — ?,p4 (—3)) and fp = f (tn — 7’])4 (—3)). We point out that interpolation at
this degree requires four additional evaluations of the full right-hand side function f (t,y), thereby significantly

increasing its cost over py(t).

We note that although interpolants of order ¢ > 5 are possible, these are not currently implemented due to their
increased computing and storage costs.

2.2. Interpolation 9



User Documentation for ARKODE, v6.2.1

2.2.2 Lagrange interpolation module

For stiff problems where f may have large Lipschitz constant, polynomial interpolants of Lagrange form are provided.
These interpolants are constructed using the data {y,, Yn—1,-..,Yn—r} Where 0 < v < 5. These polynomials have
the form

= Z Yn—;pi(t), where

Since we assume that the solutions y,,_; have length much larger than v < 5 in ARKODE-based simulations, we
evaluate p at any desired ¢ € R by first evaluating the Lagrange polynomial basis functions at the input value for ¢, and
then performing a simple linear combination of the vectors {y }%_,. Derivatives p(@ (t) may be evaluated similarly as

d
Pt Zyn 00 (),

however since the algorithmic complexity involved in evaluating derivatives of the Lagrange basis functions increases
dramatically as the derivative order grows, our Lagrange interpolation module currently only provides derivatives up
tod = 3.

We note that when using this interpolation module, during the first (v — 1) steps of integration we do not have sufficient
solution history to construct the full v-degree interpolant. Therefore during these initial steps, we construct the highest-
degree interpolants that are currently available at the moment, achieving the full v-degree interpolant once these initial
steps have completed.

2.3 ARKStep - Additive Runge-Kutta methods

The ARKStep time-stepping module in ARKODE is designed for IVPs of the form

M(t)y = fE(ty) + f1(ty),  ylto) = o, (2.2)
i.e. the right-hand side function is additively split into two components:
 fE(t,y) contains the “nonstiff” components of the system (this will be integrated using an explicit method);
* fI(t,y) contains the “stiff” components of the system (this will be integrated using an implicit method);
and the left-hand side may include a nonsingular, possibly time-dependent, matrix M (¢).

In solving the IVP (2.2), we first consider the corresponding problem in standard form,

g=fty) + f(ty),  ylte) = o, 2.3)
where fZ(t,y) = M(t)~! fE(t,y)and f1(t,y) = M(t)~' fT(t,y). ARKStep then utilizes variable-step, embedded,
additive Runge—Kutta methods (ARK), corresponding to algorithms of the form

i1
Zizynq-ﬁ-hnzz‘lfﬂm g %) T+ hn ZA ft nj, zj), i=1,...,s,

Y = Y1 + B Z(bEfE Fiz) + 0 FI L 7)) 24)

i=1

G = Yn1 + hn Z(bEfE B o) + Bt 2

i=1

10 Chapter 2. Mathematical Considerations



User Documentation for ARKODE, v6.2.1

Here §,, are embedded solutions that approximate y(¢,,) and are used for error estimation; these typically have slightly
lower accuracy than the computed solutions ¥,,. The internal stage times are abbreviated using the notation tﬁ j =
th—1 + cf h,, and t{l’ j=tn-1+ ch. h,. The ARK method is primarily defined through the coefficients AE ¢ Rsxs,
Al e R*#, bF € R*, b € R*, ¢¥ € R® and ¢! € R, that correspond with the explicit and implicit Butcher tables.
Additional coefficients b” € R® and b’ € R® are used to construct the embedding 7,,. We note that ARKStep currently
enforces the constraint that the explicit and implicit methods in an ARK pair must share the same number of stages,
s. We note that except when the problem has a time-independent mass matrix M, ARKStep allows the possibility for
different explicit and implicit abscissae, i.e. ¢ need not equal ¢’.

The user of ARKStep must choose appropriately between one of three classes of methods: ImEXx, explicit, and implicit.
All of the built-in Butcher tables encoding the coefficients cZ, ¢!, AF, AT bF, b’ bF and b’ are further described in
the section §18.

For mixed stiff/nonstiff problems, a user should provide both of the functions ¥ and f’ that define the IVP system.
For such problems, ARKStep currently implements the ARK methods proposed in [47, 64, 67], allowing for methods
having order of accuracy ¢ = {2,3,4,5} and embeddings with orders p = {1, 2, 3,4}; the tables for these methods
are given in section §18.3. Additionally, user-defined ARK tables are supported.

For nonstiff problems, a user may specify that f/ = 0, i.e. the equation (2.2) reduces to the non-split IVP

M@t)yy=f2ty),  y(to) = o 2.5)

In this scenario, the coefficients A7 = 0, ¢! = 0, b/ = 0 and b’ = 0 in (2.4), and the ARK methods reduce to
classical explicit Runge—Kutta methods (ERK). For these classes of methods, ARKODE provides coefficients with
orders of accuracy ¢ = {2, 3,4,5,6,7,8,9}, with embeddings of orders p = {1, 2,3,4,5,6,7,8}. These default to the
methods in sections §18.1.2, §18.1.6, §18.1.11, §18.1.15, §18.1.20, and §18.1.23, respectively. As with ARK methods,
user-defined ERK tables are supported.

Alternately, for stiff problems the user may specify that f¥ = 0, so the equation (2.2) reduces to the non-split IVP

M@t)g=f'(ty),  ylto) =yo. (2.6)

Similarly to ERK methods, in this scenario the coefficients AF =0,c¢F =0,bF = 0and bE = 0in (2.4), and the
ARK methods reduce to classical diagonally-implicit Runge—Kutta methods (DIRK). For these classes of methods,
ARKODE provides tables with orders of accuracy g = {2, 3,4, 5}, with embeddings of orders p = {1,2,3,4}. These
default to the methods §18.2.2, §18.2.12, §18.2.15, and §18.2.24, respectively. Again, user-defined DIRK tables are
supported.

2.4 ERKStep — Explicit Runge-Kutta methods

The ERKStep time-stepping module in ARKODE is designed for IVP of the form

y = f(tay)v y(tO) = Yo, (27)

i.e., unlike the more general problem form (2.2), ERKStep requires that problems have an identity mass matrix (i.e.,
M (t) = I) and that the right-hand side function is not split into separate components.

For such problems, ERKStep provides variable-step, embedded, explicit Runge—Kutta methods (ERK), corresponding
to algorithms of the form
i—1
Zi:ynfl'i‘hnZAi,jf(tn}j;Zj» 1=1,...,s,

Jj=1

Yn = Yn-1+hn D _bif(tni, 2), (2.8)

i=1

s
gn = Yn—-1 + hn Z bif(tn,i7 Zi)v
i=1

2.4. ERKStep — Explicit Runge-Kutta methods 11



User Documentation for ARKODE, v6.2.1

where the variables have the same meanings as in the previous section.

Clearly, the problem (2.7) is fully encapsulated in the more general problem (2.5), and the algorithm (2.8) is similarly
encapsulated in the more general algorithm (2.4). While it therefore follows that ARKStep can be used to solve every
problem solvable by ERKStep, using the same set of methods, we include ERKStep as a distinct time-stepping module
since this simplified form admits a more efficient and memory-friendly implementation than the more general form
2.7).

2.5 ForcingStep — Forcing method

The ForcingStep time-stepping module in ARKODE is designed for IVPs of the form
y=filt,y) + f2(8y), y(to) = Yo,
with two additive partitions. One step of the forcing method implemented in ForcingStep is given by

(Ul(tnfl) = Yn—1,

0 = fi(t,v1),
« V1(tn) — Yn—
fl = 1( )h y 13

v2(tn—1) = Yn—1,
by = f{ + fa(t, v2),
Yn = UZ(tn)~

Like a Lie-Trotter method from SplittingStep, the partitions are evolved through a sequence of inner [IVPs which can be
solved with an arbitrary integrator or exact solution procedure. However, the IVP for partition two includes a “forcing”
or “tendency” term f; to strengthen the coupling. This coupling leads to a first order method provided v; and vo are
integrated to at least first order accuracy. Currently, a fixed time step must be specified for the overall ForcingStep
integrator, but partition integrators are free to use adaptive time steps.

2.6 LSRKStep — Low-Storage Runge-Kutta methods

The LSRKStep time-stepping module in ARKODE supports a variety of so-called “low-storage” Runge—Kutta (LSRK)
methods, [43, 69, 78, 114]. This category includes traditional explicit fixed-step and low-storage Runge—Kutta methods,
adaptive low-storage Runge—Kutta methods, and others. These are characterized by coefficient tables that have an
exploitable structure, such that their implementation does not require that all stages be stored simultaneously. At
present, this module supports explicit, adaptive “super-time-stepping” (STS) and “strong-stability-preserving” (SSP)
methods.

The LSRK time-stepping module in ARKODE currently supports IVP of the form (2.7), i.e., unlike the more general
problem form (2.2), LSRKStep requires that problems have an identity mass matrix (i.e., M(¢) = I) and that the
right-hand side function is not split into separate components.

LSRKStep currently supports two families of second-order, explicit, and temporally adaptive STS methods:
Runge—Kutta—Chebyshev (RKC), [114] and Runge—Kutta—Legendre (RKL), [78]. These methods have the form

20 = Yn,

z1 = 2o + hji1 f(tn, 20),

zj = (1 —pj —vj)z0 + pjzj—1 + vjzj—o + h7; f(tn, 20) + it f(tn + cj—1h, zj_1)
Yn+1 = Zs-

(2.9)

The corresponding coefficients can be found in [114] and [78], respectively.

12 Chapter 2. Mathematical Considerations



User Documentation for ARKODE, v6.2.1

LSRK methods of STS type are designed for stiff problems characterized by having Jacobians with eigenvalues that
have large real and small imaginary parts. While those problems are traditionally treated using implicit methods, STS
methods are explicit. To achieve stability for these stiff problems, STS methods use more stages than conventional
Runge-Kutta methods to extend the stability region along the negative real axis. The extent of this stability region is
proportional to the square of the number of stages used.

LSRK methods of the SSP type are designed to preserve the so-called “strong-stability”” properties of advection-type
equations. For details, see [69]. The SSPRK methods in ARKODE use the following Shu—Osher representation [94]
of explicit Runge—Kutta methods:

21 = Yn,
1—1

zi= Y (igy; + Bight(tn + cjh, 25)) (2.10)
j=1
Yn+1 = Zs-

The coefficients of the Shu—Osher representation are not uniquely determined by the Butcher table [102]. In particu-
lar, the methods SSP(s,2), SSP(s,3), and SSP(10,4) implemented herein and presented in [69] have “almost™ all zero
coeflicients appearing in o; ;1 and 3; ;1. This feature facilitates their implementation in a low-storage manner. The
corresponding coefficients and embedding weights can be found in [69] and [43], respectively.

2.7 MRIStep — Multirate infinitesimal step methods

The MRIStep time-stepping module in ARKODE is designed for IVPs of the form

g=fEty)+ Ly + Py, yte) = v (2.11)

i.e., the right-hand side function is additively split into three components:

 fE(t,y) contains the “slow-nonstiff”” components of the system (this will be integrated using an explicit method
and a large time step h°),

* fI(t,y) contains the “slow-stiff’ components of the system (this will be integrated using an implicit method and
a large time step 2°), and

 fF(t,y) contains the “fast” components of the system (this will be integrated using a possibly different method
than the slow time scale and a small time step A" < h°).

As with ERKStep, MRIStep currently requires that problems be posed with an identity mass matrix, M (t) = I. The
slow time scale may consist of only nonstiff terms (f =), only stiff terms (f E = (), or both nonstiff and stiff terms.

For cases with only a single slow right-hand side function (i.e., f¥ = 0 or f/ = 0), MRIStep provides multirate
infinitesimal step (MIS) [90, 91, 92], first through fourth order multirate infinitesimal GARK (MRI-GARK) [88], and
second through fifth order multirate exponential Runge—Kutta (MERK) [76] methods. For problems with an additively
split slow right-hand side, MRIStep provides first through fourth order implicit-explicit MRI-GARK (IMEX-MRI-
GARK) [29] and second through fourth order implicit-explicit multirate infinitesimal stage-restart (IMEX-MRI-SR)
[45] methods. For a complete list of the methods available in MRIStep see §5.11.3.2. Additionally, users may supply
their own method by defining and attaching a coupling table, see §5.11.3 for more information.

Generally, the slow (outer) method for each family derives from a single-rate method: MIS and MRI-GARK meth-
ods derive from explicit or diagonally-implicit Runge—Kutta methods, MERK methods derive from exponential
Runge—Kutta methods, while IMEX-MRI-GARK and IMEX-MRI-SR methods derive from additive Runge—Kutta
methods. In each case, the “infinitesimal” nature of the multirate methods derives from the fact that slow stages are
computed by solving a set of auxiliary ODEs with a fast (inner) time integration method. Generally speaking, an s-stage
method from of each family adheres to the following algorithm for a single step:

1. Set 21 = Yn—1-

2.7. MRIStep — Multirate infinitesimal step methods 13



User Documentation for ARKODE, v6.2.1

2. Fori =2,...,s, compute the stage solutions, z;, by evolving the fast [IVP
’U;(t) = fF(t, ’Ui) + T‘Z‘(t) for te [to’%tp’i] with 'Uz‘(tO,i) =0, (2.12)

and setting z; = v(tr;), and/or performing a standard explicit, diagonally-implicit, or additive Runge—Kutta
stage update,

i — 03,05 1t 5, %) = a;. (2.13)

where ¢y ; = t,_1 + h%c;.

n]_

3. Sety, = zs.

4. If the method has an embedding, compute the embedded solution, ¢, by evolving the fast IVP

o'(t) = fF(t,0) +7#(t) for t€[ty,tr] with (fg) = o (2.14)
and setting ,, = 9(fr), and/or performing a standard explicit, diagonally-implicit, or additive Runge—Kutta
stage update,

Gn — OLS L (t, ) = a. (2.15)

Whether a fast IVP evolution or a stage update (or both) is needed depends on the method family (MRI-GARK, MERK,
etc.). The specific aspects of the fast IVP forcing function (r; (¢) or 7(¢)), the interval over which the IVP must be evolved
([to,:, tr]), the Runge—Kutta coefficients (; ; and 9~), and the Runge—Kutta data (a; and a), are also determined by the
method family. Generally, the forcing functions and data, are constructed using evaluations of the slow RHS functions,
fE and f!, at preceding stages, z;. The fast IVP solves can be carried out using any valid ARKODE integrator or a
user-defined integration method (see section §5.11.4).

Below we summarize the details for each method family. For additional information, please see the references listed
above.

2.7.1 MIS, MRI-GARK, and IMEX-MRI-GARK Methods

The methods in IMEX-MRI-GARK family, which includes MIS and MRI-GARK methods, are defined by a vector of
slow stage time abscissae, ¢ € R?, and a set of coupling tensors, {2 € REHDXsXk and T € R(“'“)XSX’“, that specify
the slow-to-fast coupling for the explicit and implicit components, respectively.

The fast stage IVPs, (2.12), are evolved over non-overlapping intervals [to;,t,;] = [t ; 1, t5 ;] with the initial condi-
tion vg ; = 2;—1. The fast IVP forcing function is given by

1) = e S 750 5) + e S s (6 2)

ioj=1 ioj=1

where Acf = (¢f —¢f ), 7= (t—1t,

n,i—1
polynomials in time of degree k — 1 given by

)/(hSAc?) is the normalized time, the coefficients w; j and ~; ; are

wm(r) = ZQ@M 7'271 and ’YL] ZF mgT 1. (216)

When the slow abscissa are repeated, i.e. Acy = 0, the fast IVP can be rescaled and integrated analytically leading to
the Runge—Kutta update (2.13) instead of the fast IVP evolution. In this case the stage is computed as

5=z 1+hSZ<Z ”")fE nir? hSZ<Z ””)f’(w 3)- (2.17)

{=1 {=1

14 Chapter 2. Mathematical Considerations



User Documentation for ARKODE, v6.2.1

Similarly, the embedded solution IVP, (2.14), is evolved over the interval [fo, ] = [t;, ,_ ;. t,] with the initial condition
’Do = Zs5—1-

As with standard ARK and DIRK methods, implicitness at the slow time scale is characterized by nonzero values on
or above the diagonal of the k matrices in I". Typically, MRI-GARK and IMEX-MRI-GARK methods are at most
diagonally-implicit (i.e., I'; j o = O for all £ and j > ¢). Furthermore, diagonally-implicit stages are characterized as
being “solve-decoupled” if Ac; = 0 when I'; ;, # 0, in which case the stage is computed as a standard ARK or
DIRK update. Alternately, a diagonally-implicit stage i is considered “solve-coupled” if Ac? T'; ;¢ # 0, in which case
the stage solution z; is both an input to r;(t) and the result of time-evolution of the fast IVP, necessitating an implicit
solve that is coupled to the fast evolution. At present, only “solve-decoupled” diagonally-implicit MRI-GARK and
IMEX-MRI-GARK methods are supported.

2.7.2 IMEX-MRI-SR Methods

The IMEX-MRI-SR family of methods perform both the fast IVP evolution, (2.12) or (2.14), and stage update, (2.13)
or (2.15), in every stage (but these methods typically have far fewer stages than implicit MRI-GARK or IMEX-MRI-
GARK methods). These methods are defined by a vector of slow stage time abscissae ¢® € R?, a set of coupling tensors
Q0 € RGs+Dxsxk and a Butcher table of slow-implicit coefficients, I' € R(s+1)xs,

The fast stage IVPs, (2.12), are evolved on overlapping intervals [to;,tr;] = [tn_1,t5 ;] with the initial condition

]
n,i
V9,; = Yn—1. The fast IVP forcing function is given by
it
rit) = —5 > wi(r) (FE(t 5o 2) + £t 5 25)) 5 (2.18)

7 j=1

where 7 = (t — t,,)/(h°¢c;) is the normalized time, and the coefficients w; ; are polynomials in time of degree k — 1
that are also given by (2.16). The solution of these fast IVPs defines an intermediate stage solution, z;.

The implicit solve that follows each fast IVP must solve the algebraic equation for z;

zi= %+ 0% v (5 2)- (2.19)

Jj=1

We note that IMEX-MRI-SR methods are solve-decoupled by construction, and thus the structure of a given stage never
needs to be deduced based on Ac;. However, ARKODE still checks the value of 7i,i» since if it zero then the stage
update equation (2.19) simplifies to a simple explicit Runge—Kutta-like stage update.

The overall time step solution is given by the final internal stage solution, i.e., ¥, = z;. The embedded solution is
computing using the above algorithm for stage index s + 1, under the definition that ¢ 1 = 1 (and thus the fast IVP
portion is evolved over the full time step, [to, tr] = [th—1, tn])-

2.7.3 MERK Methods

The MERK family of methods are only defined for multirate applications that are explicit at the slow time scale, i.e.,
fT = 0, but otherwise they are nearly identical to IMEX-MRI-SR methods. Specifically, like IMEX-MRI-SR methods,
these evolve the fast IVPs (2.12) and (2.14) over the intervals [tg;,tp;] = [tn,l,tf;i] and [o,tr] = [tn_1,tn)s
respectively, and begin with the initial condition v ; = y,—1. Furthermore, the fast IVP forcing functions are given by
(2.18) with fI = 0. As MERK-based applications lack the implicit slow operator, they do not require the solution of

implicit algebraic equations.

However, unlike other MRI families, MERK methods were designed to admit a useful efficiency improvement. Since
each fast IVP begins with the same initial condition, v ; = y,—1, if multiple stages share the same forcing function
r;(t), then they may be “grouped” together. This is achieved by sorting the final IVP solution time for each stage,
t5 ., and then evolving the inner solver to each of these stage times in order, storing the corresponding inner solver

n,i’

2.7. MRIStep — Multirate infinitesimal step methods 15



User Documentation for ARKODE, v6.2.1

solutions at these times as the stages z;. For example, the ARKODE_MERKS54 method involves 11 stages, that may
be combined into 5 distinct groups. The fourth group contains stages 7, 8, 9, and the embedding, corresponding to
the ¢ values 7/10, 1/2, 2/3, and 1. Sorting these, a single fast IVP for this group must be evolved over the interval
[t0,i,tFi] = [tn—1,tn], first pausing at t,_1 + %hs to store zg, then pausing at ¢, _1 + %hS to store zg, then pausing
att,—1 + %hs to store z7, and finally finishing the IVP solve to ¢,,_1 + h*® to obtain Un»

Note

Although all MERK methods were derived in [76] under an assumption that the fast function f¥'(¢, ) is linear in y,
in [45] it was proven that MERK methods also satisfy all nonlinear order conditions up through their linear order.
The lone exception is ARKODE_MERKS4, where it was only proven to satisfy all nonlinear conditions up to order
4 (since [45] did not establish the formulas for the order 5 conditions). All our numerical tests to date have shown
ARKODE_MERKS54 to achieve fifth order for nonlinear problems, and so we conjecture that it also satisfies the
nonlinear fifth order conditions.

2.8 SplittingStep — Operator splitting methods

The SplittingStep time-stepping module in ARKODE is designed for IVPs of the form

v = filt,y) + fa(t,y) + -+ fp(t,y), y(to) = Yo,

with P > 1 additive partitions. Operator splitting methods, such as those implemented in SplittingStep, allow each par-
tition to be integrated separately, possibly with different numerical integrators or exact solution procedures. Coupling
is only performed though initial conditions which are passed from the flow of one partition to the next.

The following algorithmic procedure is used in the Splitting-Step module:
1. Fori=1,...,rdo:
1. Setyn; = Yn—1.
2. Forj=1,...,sdo:
1. Fork=1,...,Pdo:
1. Let tgart = t—1 + Bij,khn and teng = tn—1 + Bi j+1,60n.
2. Let v(tsart) = Yn.i-
3. Fort € [tsart, tena) SOIVe 0 = fi(t,v).
4. Set Yy, i = v(tend)-
2. Setyn, = >0y QilYni

Here, s denotes the number of stages, while r denotes the number of sequential methods within the overall operator
splitting scheme. The sequential methods have independent flows which are linearly combined to produce the next
step. The coefficients o € R” and 3 € R"*(s+1)*P determine the particular scheme and properties such as the order
of accuracy.

An alternative representation of the SplittingStep solution is
P
P P-1 1 P 1 P 1
Yn = Z @ (d)’)’i,s,Phn © d)'yi,s,pflhn 00 (ZS'Yi,s,lhn ° d)'Y'i,sfl,Phn -0 d)’)’i,s—l,lhn 00 ¢’)’i,1,Phn 00 ¢'Y'i,1,1hn> (y"_l)
i=1
where v; . = Bi j+1,6 — Bi,j,k is the scaling factor for the step size, h,,, and qﬁﬁ is the flow map for partition k:

k o ’U(tnfl) = Yn—-1,
¢hn (yn—l) - U(tn)v {’U _ fk(t,U).

16 Chapter 2. Mathematical Considerations



User Documentation for ARKODE, v6.2.1

For example, the Lie—Trotter splitting [17], given by

Yn = Ln, (Yn-1) = (¢, 00" 00 i) (Yn-), (2.20)
is a first order, one-stage, sequential operator splitting method suitable for any number of partitions. Its coefficients are

alzl,

0 j=1
ﬁl,j,kZ{ J ; j=12 and k=1,...,P.
1 j=2

Higher order operator splitting methods are often constructed by composing the Lie—Trotter splitting with its adjoint:
Ly = L:}L" =¢p 0@ o0d . (2.21)

This is the case for the Strang splitting [104]
Yn = Sh, (Yn-1) = (LZ,L/z ° Lhn/2> (Yn—1), (2.22)

which has P stages and coefficients

0[1:].7
0 57=1
Bijek=<s1 j+k>P+1, j=1,...,P+1 and k=1,...,P.
% otherwise

SplittingStep provides standard operator splitting methods such as the Lie—Trotter and Strang splitting, as well as
schemes of arbitrarily high order. Alternatively, users may provide their own coefficients (see §5.12.3). Generally,
methods of order three and higher with real coefficients require backward integration, i.e., there exist negative ; ; »
coefficients. Currently, a fixed time step must be specified for the overall SplittingStep integrator, but partition integra-
tors are free to use adaptive time steps.

2.9 SPRKStep — Symplectic Partitioned Runge-Kutta methods

The SPRKStep time-stepping module in ARKODE is designed for problems where the state vector is partitioned as
p(t)]
t =
y( ) {q(t)
and the component partitioned IVP is given by

p:fl(t7q)7 p(tO) = Po

2.23
q:fQ(tvp)v q(to):qo ( )

The right-hand side functions f1 (¢, p) and f2(t, q) typically arise from the separable Hamiltonian system

H(t,p,q) =T(t,p) +V(tq)
where

ftg =500 e =200,

When H is autonomous, then H is a conserved quantity. Often this corresponds to the conservation of energy (for exam-
ple, in n-body problems). For non-autonomous H, the invariants are no longer directly obtainable from the Hamiltonian
[105].

2.9. SPRKStep — Symplectic Partitioned Runge-Kutta methods 17



User Documentation for ARKODE, v6.2.1

In practice, the ordering of the variables does not matter and is determined by the user. SPRKStep utilizes Symplectic
Partitioned Runge-Kutta (SPRK) methods represented by the pair of explicit and diagonally implicit Butcher tableaux,

C1 0 tee 0 0 él &1 R 0 0

Co | a1 0 s . 62 &1 &2

Cs | Q1 et Qg—1 0 és &1 &2 s fLS
ap -+ QAs—1 Qg ay a2 -+ Qs

These methods approximately conserve a nearby Hamiltonian for exponentially long times [53]. SPRKStep makes
the assumption that the Hamiltonian is separable, in which case the resulting method is explicit. SPRKStep provides
schemes with order of accuracy and conservation equal to ¢ = {1, 2, 3,4,5,6,8,10}. The references for these these
methods and the default methods used are given in the section §18.4.

In the default case, the algorithm for a single time-step is as follows (for autonomous Hamiltonian systems the times
provided to f; and f5 can be ignored).

1. Set Py = pn—1,01 = qn-1
2. Fori=1,...,sdo:
1. P,=Pi_q + hpa; f1(tn—1 + éihn, Qi)
2. Qiy1= Qi+ hnaifo(tn1+cihn, )
3. Setp, = Ps,qn = Qst1

Optionally, a different algorithm leveraging compensated summation can be used that is more robust to roundoff error at
the expense of 2 extra vector operations per stage and an additional 5 per time step. It also requires one extra vector to be
stored. However, it is significantly more robust to roundoff error accumulation [100]. When compensated summation
is enabled, the following incremental form is used to compute a time step:

1. Set APy =0,AQ: =0
2. Fort=1,...,sdo:
1. AP = APy + hpa; fi(th—1 + Cihn, gn—1 + AQy)
2. AQi1 = AQ; + hpaifa(tn—1 + cihn, pn1 + AP)
3. Set Ap, = AP, Aq, = AQs11
4. Using compensated summation, set p,, = pn—1 + APny @n = Gn-1 + Agn

Since temporal error based adaptive time-stepping is known to ruin the conservation property [53], SPRKStep requires
that ARKODE be run using a fixed time-step size.

2.10 Error norms

In the process of controlling errors at various levels (time integration, nonlinear solution, linear solution), the methods
in ARKODE use a weighted root-mean-square norm, denoted || - || wrwms, for all error-like quantities,

1 N 1/2
2
||UHWRMS = (N ; (’Ui wz) ) . (224)

The utility of this norm arises in the specification of the weighting vector w, that combines the units of the problem
with user-supplied values that specify an “acceptable” level of error. To this end, we construct an error weight vector
using the most-recent step solution and user-supplied relative and absolute tolerances, namely

w; = (RTOL - |yn—1,4| + ATOL;) ™. (2.25)

18 Chapter 2. Mathematical Considerations



User Documentation for ARKODE, v6.2.1

Since 1/w; represents a tolerance in the i-th component of the solution vector y, a vector whose WRMS norm is
1 is regarded as “small.” For brevity, unless specified otherwise we will drop the subscript WRMS on norms in the
remainder of this section.

Additionally, for problems involving a non-identity mass matrix, M # I, the units of equation (2.2) may differ from
the units of the solution y. In this case, we may additionally construct a residual weight vector,

wi = (RTOL - |(M(ta—1)yu-1),| + ATOL) - (2.26)

where the user may specify a separate absolute residual tolerance value or array, ATOL’. The choice of weighting
vector used in any given norm is determined by the quantity being measured: values having “solution” units use (2.25),
whereas values having “equation” units use (2.26). Obviously, for problems with M = I, the solution and equation
units are identical, in which case the solvers in ARKODE will use (2.25) when computing all error norms.

2.11 Time step adaptivity

A critical component of IVP “solvers” (rather than just time-steppers) is their adaptive control of local truncation error
(LTE). At every step, we estimate the local error, and ensure that it satisfies tolerance conditions. If this local error
test fails, then the step is recomputed with a reduced step size. To this end, the majority of the Runge—Kutta methods
and many of the MRI methods in ARKODE admit an embedded solution ¥,,, as shown in equations (2.4), (2.8), and
(2.14)-(2.15). Generally, these embedded solutions attain a slightly lower order of accuracy than the computed solution
Yn. Denoting the order of accuracy for ¥, as ¢ and for ¢,, as p, most of these embedded methods satisfy p = ¢ — 1.
These values of ¢ and p correspond to the global orders of accuracy for the method and embedding, hence each admit
local truncation errors satisfying [51]

lyn = y(tn)ll = CRET + O(REF?),

7 (2.27)
[Gn — y(tn)ll = DREFT + O(RET?),

where C' and D are constants independent of h,,, and where we have assumed exact initial conditions for the step, i.e.
Yn—1 = Y(t,—1). Combining these estimates, we have

NYn — Gnll = lyn — y(tn) = Gn + yE) | < lyn — y(E) | + 190 — y(tn)ll < thfl + O(hﬁ+2)~

We therefore use the norm of the difference between y,, and ¥, as an estimate for the LTE at the step n
T = B (g = Gn) = Bl 3 | (0F = BF) 2t 20) + (o] = B) F1 (24 1,20)| (2.28)
i=1

for ARK methods, and similarly for ERK methods. Here, 8 > 0 is an error bias to help account for the error constant
D; the default value of this constant is 8 = 1.5, which may be modified by the user.

With this LTE estimate, the local error test is simply |7, || < 1 since this norm includes the user-specified tolerances.
If this error test passes, the step is considered successful, and the estimate is subsequently used to determine the next
step size, the algorithms used for this purpose are described in §2.11. If the error test fails, the step is rejected and a
new step size b’ is then computed using the same error controller as for successful steps. A new attempt at the step is
made, and the error test is repeated. If the error test fails twice, then h’/h is limited above to 0.3, and limited below to
0.1 after an additional step failure. After seven error test failures, control is returned to the user with a failure message.
We note that all of the constants listed above are only the default values; each may be modified by the user.

We define the step size ratio between a prospective step h’ and a completed step h as 7, i.e. n = h’/h. This value is
subsequently bounded from above by 7. to ensure that step size adjustments are not overly aggressive. This upper
bound changes according to the step and history,

etamxl1, on the first step (default is 10000),
Nmax = § growth, on general steps (default is 20),
1, if the previous step had an error test failure.

2.11. Time step adaptivity 19



User Documentation for ARKODE, v6.2.1

A flowchart detailing how the time steps are modified at each iteration to ensure solver convergence and successful
steps is given in the figure below. Here, all norms correspond to the WRMS norm, and the error adaptivity function
arkAdapt is supplied by one of the error control algorithms discussed in the subsections below.

h0 supplied?

compute h0 to
approximately solve

1h0r2 y” 1< 2

if (nst==0): h =h0
else: h=h*eta

attempt step

convergence failure?

etamax = |
nef =nef + 1
il (h==hmin or ncl==maxncl): halt

no eta = max(etacf, hmin/h)
cstimate error: h=h*cta
dsm = lly_errorll
’ etamax = 1
nef = pef + 1
is dsm<l ? no if (h==hmin or nef==maxnef): halt

eta = arkAdapt(h, hl, h2, dsm, el, e2)
il (nel >= small_nel): eta = max(eta, etamxl)

yes h=h*eta

nst=nst+ 1

if (etamax==1): eta=1

eta = arkAdapt(h, h1, h2, dsm, el, e2)
—— h2=hl

hli=h

c2=cl

el =dsm * bias

For some problems it may be preferable to avoid small step size adjustments. This can be especially true for problems
that construct a Newton Jacobian matrix or a preconditioner for a nonlinear or an iterative linear solve, where this con-
struction is computationally expensive, and where convergence can be seriously hindered through use of an inaccurate
matrix. To accommodate these scenarios, the step is left unchanged when 1 € [nr,ny]. The default values for this
interval are 7z, = 1 and 7y = 1.5, and may be modified by the user.

We note that any choices for 77 (or equivalently, h') are subsequently constrained by the optional user-supplied bounds
hmin and hpac. Additionally, the time-stepping algorithms in ARKODE may similarly limit 4’ to adhere to a user-
provided “TSTOP” stopping point, #op.

The time-stepping modules in ARKODE adapt the step size in order to attain local errors within desired tolerances of
the true solution. These adaptivity algorithms estimate the prospective step size k' based on the asymptotic local error
estimates (2.27). We define the values ¢,,, €,,_1 and €,,_5 as

ex = [Tkl = Bllye — Txlls

corresponding to the local error estimates for three consecutive steps, t,,—3 — tn—2 — t,—1 — t,. These local
error history values are all initialized to 1 upon program initialization, to accommodate the few initial time steps of a
calculation where some of these error estimates have not yet been computed. With these estimates, ARKODE supports
one of two approaches for temporal error control.

First, any valid implementation of the SUNAdaptController class §12.1 may be used by ARKODE’s adaptive time-
stepping modules to provide a candidate error-based prospective step size h'.

Second, ARKODE’s adaptive time-stepping modules currently still allow the user to define their own time step adap-
tivity function,

h/ = H(ya t7 h’n7 hn—la hn—27 EnsEn—1yEn—2, qap)7

20 Chapter 2. Mathematical Considerations



User Documentation for ARKODE, v6.2.1

allowing for problem-specific choices, or for continued experimentation with temporal error controllers. We note that
this support has been deprecated in favor of the SUNAdaptController class, and will be removed in a future release.

2.11.1 Multirate time step adaptivity (MRIStep)

Since multirate applications evolve on multiple time scales, MRIStep supports additional forms of temporal adaptivity.
Specifically, we consider time steps at two adjacent levels, h° > h%', where h° is the step size used by MRIStep, and
h¥ is the step size used to solve the corresponding fast-time-scale IVPs in MRIStep, (2.12) and (2.14).

2.11.1.1 Multirate temporal controls

We consider two categories of temporal controllers that may be used within MRI methods. The first (and simplest),
are “decoupled” controllers, that consist of two separate single-rate temporal controllers: one that adapts the slow time
scale step size, h°, and the other that adapts the fast time scale step size, h'". As these ignore any coupling between the
two time scales, these methods should work well for multirate problems where the time scales are somewhat decoupled,
and that errors introduced at one scale do not “pollute” the other.

The second category of controllers that we provide are h°-Tol multirate controllers. The basic idea is that an adaptive
time integration method will attempt to adapt step sizes to control the local error within each step to achieve a requested
tolerance. However, MRI methods must ask an adaptive “inner” solver to produce the stage solutions v; (¢ ;) and ¥ (),
that result from sub-stepping over intervals [to ;,tr ;] or [to, x|, respectively. Local errors within the inner integrator
may accumulate, resulting in an overall inner solver error ¢£ that exceeds the requested tolerance. If that inner solver
can produce both v;(tr,;) and an estimation of the accumulated error, 557 approz- then the tolerances provided to that
inner solver can be adjusted accordingly to ensure stage solutions that are within the overall tolerances requested of the
outer MRI method.

To this end, we assume that the inner solver will provide accumulated errors over each fast interval having the form

el = c(t,)hs (RTOLY) , (2.29)

where ¢(t) is independent of the tolerance or step size, but may vary in time. Single-scale adaptive controllers assume
that the local error at a step n with step size h,, has order p, i.e.,

LTE, = c(t,)(h,)P"T!,
to predict candidate values h,,.1. We may therefore repurpose an existing single-scale controller to predict candidate
values RTOLE 1 by supplying an “order” p = 0 and a “control parameter” h,, = (RTOL,S )
Thus to construct an h°-Tol controller, we require three separate single-rate adaptivity controllers:

» scontrol-H — this is a single-rate controller that adapts A within the slow integrator to achieve user-requested
solution tolerances.

* scontrol-Tol — this is a single-rate controller that adapts RTOLS using the strategy described above.
« fcontrol — this adapts time steps h’" within the fast integrator to achieve the current tolerance, RTOLE .

We note that both the decoupled and h°-T'ol controller families may be used in multirate calculations with an arbitrary
number of time scales, since these focus on only one scale at a time, or on how a given time scale relates to the next-faster
scale.

2.11. Time step adaptivity 21



User Documentation for ARKODE, v6.2.1

2.11.1.2 Fast temporal error estimation

MRI temporal adaptivity requires estimation of the temporal errors that arise at both the slow and fast time scales,
which we denote here as £° and ', respectively. While the slow error may be estimated as € = ||, — ||, non-
intrusive approaches for estimating £ are more challenging. ARKODE provides several strategies to help provide this
estimate, all of which assume the fast integrator is temporally adaptive and, at each of its m steps to reach ¢,,, computes
an estimate of the local temporal error, 557,,1. In this case, we assume that the fast integrator was run with the same
absolute tolerances as the slow integrator, but that it may have used a potentially different relative solution tolerance,
RTOL”. The fast integrator then accumulates these local error estimates using either a “maximum accumulation”
strategy,

F F F
€maz = RTOL™ max ey, . [wras, (2.30)
an “additive accumulation” strategy,
F F F
Esum = RTOL Z Hgn,mHWRJW»Sv (2.31)
meS
or using an “averaged accumulation” strategy,
»  RTOL” »
Cavg = Ats Z h"»'mHsn,'rnHWRMSH (232)
meS
where h,, ,, is the step size that gave rise to ef}m, At g denotes the elapsed time over which § is taken, and the norms

are taken using the tolerance-informed error-weight vector. In each case, the sum or the maximum is taken over the set
of all steps S since the fast error accumulator has been reset.

2.12 Initial step size estimation

Before time step adaptivity can be accomplished, an initial step must be taken. These values may always be provided
by the user; however, if these are not provided then ARKODE will estimate a suitable choice. Typically with adaptive
methods, the first step should be chosen conservatively to ensure that it succeeds both in its internal solver algorithms,
and its eventual temporal error test. However, if this initial step is too conservative then its computational cost will
essentially be wasted. We thus strive to construct a conservative step that will succeed while also progressing toward
the eventual solution.

Before commenting on the specifics of ARKODE, we first summarize two common approaches to initial step size
selection. To this end, consider a simple single-time-scale ODE,

y'(t) = f(t,y), y(to) =wo (2.33)

For this, we may consider two Taylor series expansions of (o + /) around the initial time,

h? d
y(to +h) = yo + hf(to,yo) + 7&]%0 + 7,95 + 1), (2.34)
and
y(to +h) =yo +hf(to+ 7,90 +n), (2.35)

where to + 7 is between ¢ and ¢y + h, and yo + 7 is on the line segment connecting yo and y(to + h).

Initial step size estimation based on the first-order Taylor expansion (2.34) typically attempts to determine a step size
such that an explicit Euler method for (2.33) would be sufficiently accurate, i.e.,

2

h= d
ly(to + ho) — (o + hof(tou o)) || ~ H Fltoo)| < 1.

2 dt

22 Chapter 2. Mathematical Considerations



User Documentation for ARKODE, v6.2.1

where we have assumed that y(t) is sufficiently differentiable, and that the norms include user-specified tolerances such
that an error with norm less than one is deemed “acceptable.” Satisfying this inequality with a value of % and solving
for hg, we have

1
ol = o5

H%f(tmyo)ﬂ

Finally, by estimating the time derivative with finite-differences,

%f(toyyo) ~ % (f(to + 0t,yo + 6t f(to, yo)) — f(to, v0)) ,

we obtain

§t1/2
||f(t0 + 5157?/0 + 5tf(t07y0)) - f(t07y0)||1/2 .

Initial step size estimation based on the simpler Taylor expansion (2.35) instead assumes that the first calculated time
step should be “close” to the initial state,

Iho| = (2.36)

ly(to + ho) = yoll = [[ho f (o, yo)ll < 1,
where we again satisfy the inequality with a value of % to obtain

1
2| f(to, vo)ll

Comparing the two estimates (2.36) and (2.37), we see that the former has double the number of f evaluations, but that
it has a less conservative estimate of hg, particularly since we expect any valid time integration method to have at least
O(h) accuracy.

lho| = (2.37)

Of these two approaches, for calculations at a single time scale (e.g., using ARKStep), formula (2.36) is used, due to
its more aggressive estimate for hy.

2.12.1 Initial multirate step sizes

In MRI methods, initial time step selection is complicated by the fact that not only must an initial slow step size, h§,
be chosen, but a smaller initial step, h{, must also be selected. Additionally, it is typically assumed that within MRI
methods, evaluation of f* is significantly more costly than evaluation of f¥, and thus we wish to construct these initial
steps accordingly.

Under an assumption that conservative steps will be selected for both time scales, the error arising from temporal
coupling between the slow and fast methods may be negligible. Thus, we estimate initial values of h5 and h{" inde-
pendently. Due to our assumed higher cost of f°, then for the slow time scale we employ the initial estimate (2.37) for

hs using f = f9. Since the function f*" is assumed to be cheaper, we instead apply the estimate (2.36) for h{ using
lhg |
10 °

f = fF, and enforce an upper bound |h{'| <

Note

If the fast integrator does not supply its “full RHS function” f* for the MRI method to call, then we simply initialize

S
F _ hg
hO — 100

2.12. Initial step size estimation 23



User Documentation for ARKODE, v6.2.1

2.13 Explicit stability

For problems that involve a nonzero explicit component, i.e. f¥(¢,%) # 0 in ARKStep or for any problem in ERKStep,
explicit and ImEx Runge—Kutta methods may benefit from additional user-supplied information regarding the explicit
stability region. All ARKODE adaptivity methods utilize estimates of the local error, and it is often the case that such
local error control will be sufficient for method stability, since unstable steps will typically exceed the error control
tolerances. However, for problems in which f¥(¢,%) includes even moderately stiff components, and especially for
higher-order integration methods, it may occur that a significant number of attempted steps will exceed the error toler-
ances. While these steps will automatically be recomputed, such trial-and-error can result in an unreasonable number
of failed steps, increasing the cost of the computation. In these scenarios, a stability-based time step controller may
also be useful.

Since the maximum stable explicit step for any method depends on the problem under consideration, in that the value
(hnA) must reside within a bounded stability region, where ) are the eigenvalues of the linearized operator 9 f /9y,
information on the maximum stable step size is not readily available to ARKODE’s time-stepping modules. How-
ever, for many problems such information may be easily obtained through analysis of the problem itself, e.g. in
an advection-diffusion calculation f may contain the stiff diffusive components and f¥ may contain the compara-
bly nonstiff advection terms. In this scenario, an explicitly stable step hcx, would be predicted as one satisfying the
Courant-Friedrichs-Lewy (CFL) stability condition for the advective portion of the problem,

Az
Pex —
|ep‘< |)\‘

where Az is the spatial mesh size and X is the fastest advective wave speed.

In these scenarios, a user may supply a routine to predict this maximum explicitly stable step size, |hexp|. If a value for
|hexp| is supplied, it is compared against the value resulting from the local error controller, |h,.|, and the eventual time
step used will be limited accordingly,

h .
h = mmln{clhexp|7 |hacc‘}'

Here the explicit stability step factor ¢ > 0 (often called the “CFL number”) defaults to 1/2 but may be modified by
the user.

2.14 Fixed time stepping

While most of the time-stepping modules are designed for tolerance-based time step adaptivity, they additionally sup-
port a “fixed-step” mode. This mode is typically used for debugging purposes, for verification against hand-coded
methods, or for problems where the time steps should be chosen based on other problem-specific information. In this
mode, all internal time step adaptivity is disabled:

* temporal error control is disabled,
* nonlinear or linear solver non-convergence will result in an error (instead of a step size adjustment),

* no check against an explicit stability condition is performed.

Note

Since temporal error based adaptive time-stepping is known to ruin the conservation property of SPRK methods,
SPRKStep employs a fixed time-step size by default.

24 Chapter 2. Mathematical Considerations



User Documentation for ARKODE, v6.2.1

Note

Any methods that do not provide an embedding are required to be run in fixed-step mode.

Additional information on this mode is provided in the section ARKODE Optional Inputs.

2.15 Algebraic solvers

When solving a problem involving either an implicit component (e.g., in ARKStep with f/(,%) # 0, or in MRIStep
with a solve-decoupled implicit slow stage), or a non-identity mass matrix (M (t) # I in ARKStep), systems of linear
or nonlinear algebraic equations must be solved at each stage and/or step of the method. This section therefore focuses
on the variety of mathematical methods provided in the ARKODE infrastructure for such problems, including nonlin-
ear solvers, linear solvers, preconditioners, iterative solver error control, implicit predictors, and techniques used for
simplifying the above solves when using different classes of mass-matrices.

2.15.1 Nonlinear solver methods
Methods with an implicit partition require solving implicit systems of the form
G(z;) =0. (2.38)

In order to maximize solver efficiency, we define this root-finding problem differently based on the type of mass-matrix
supplied by the user.

* In the case that M = I within ARKStep, we define the residual as
G(zi) = 2 — hn AL f (], 4 %) — as, (2.39)

where we have the data

1—1
a; = Yn-1+ ha Z (AT Pt o 2) + Af,ij(tfz,jv z)] -
j=1

* In the case of non-identity mass matrix M # [ within ARKStep, but where M is independent of ¢, we define
the residual as

G(zi) = Mz — hy AL f1(th 5. 2) — ai, (2.40)
where we have the data
1—1
ai = Myn_1+hn Y [AFFE(E 1 2) + AL F(th .2))]
j=1

Note

This form of residual, as opposed to G(z;) = z; — hnAfl i (t,lw», z;) — a; (with a; defined appropriately),
removes the need to perform the nonlinear solve with right-hand side function f I'= M~ fI as that would
require a linear solve with M at every evaluation of the implicit right-hand side routine.

2.15. Algebraic solvers 25



User Documentation for ARKODE, v6.2.1

* In the case of ARKStep with M dependent on ¢, we define the residual as
G(zi) = M(t] )z — a;) — ha AL f1 (), 4, 1) (2.41)

where we have the data

a; = Yn—1 + hy Z[ nj, )+A1f(n]7z):|'

Note

As above, this form of the residual is chosen to remove excessive mass-matrix solves from the nonlinear solve
process.

 Similarly, in MRIStep (that always assumes M = I), MRI-GARK and IMEX-MRI-GARK methods have the
residual

Liik
G(zi) =z = h% | D =525 ) 1t ) —ai = 0 (242)
k>1
where

a; = Zj— 1+hsz Z Z]k fl(nga )

j=1 \k>1

IMEX-MRI-SR methods have the residual
G(zi) = 2z — hoTy i f1(th 1, 21) —a; = 0 (2.43)

where

a; = Zj— 1+h Zr1jfl 7)]5 )

j=1

Upon solving for z;, method stages must store f (£ §1 z;)and fI(t .. z;). Itis possible to compute the latter without
evaluating f7 after each nonlinear solve. Consider, for example, (2.39) which implies

71]7

Z; — a;

I, I

when z; is the exact root, and similar relations hold for non-identity mass matrices. This optimization can be enabled
by ARKodeSetDeduceImplicitRhs () with the second argument in either function set to SUNTRUE. Another factor
to consider when using this option is the amplification of errors from the nonlinear solver to the stages. In (2.44),
nonlinear solver errors in z; are scaled by 1/ (hnAfl) By evaluating f! on z;, errors are scaled roughly by the Lipshitz
constant L of the problem. If hnAiI’iL > 1, which is often the case when using implicit methods, it may be more
accurate to use (2.44). Additional details are discussed in [93].

In each of the above nonlinear residual functions, if f7(t,y) depends nonlinearly on % then (2.38) corresponds to a
nonlinear system of equations; if instead f7(¢,y) depends linearly on 3 then this is a linear system of equations.

26 Chapter 2. Mathematical Considerations



User Documentation for ARKODE, v6.2.1

To solve each of the above root-finding problems ARKODE leverages SUNNonlinearSolver modules from the under-
lying SUNDIALS infrastructure (see section §11). By default, ARKODE selects a variant of Newton’s method,

Z§m+1) _ Zl(m) + 6(m+1)7 (2.45)

where m is the Newton iteration index, and the Newton update §"*1) in turn requires the solution of the Newton linear
system

A(th ™) D =~ (o) (2.46)
in which
I
A(t,z) = M(t) —~J(t, 2z), J(t, z) = w, and vy = h,A!, (2.47)
> ,
within ARKStep, or
ofl(t, z) s i

within MRIStep.

In addition to Newton-based nonlinear solvers, the SUNDIALS SUNNonlinearSolver interface allows solvers of fixed-
point type. These generally implement a fixed point iteration for solving an implicit stage z;,

2 = () =2 - Mt )G () m=01,. (2.49)

Unlike with Newton-based nonlinear solvers, fixed-point iterations generally do not require the solution of a linear
system involving the Jacobian of f at each iteration.

Finally, if the user specifies that f(¢,y) depends linearly on 3 in ARKStep or MRIStep and if the Newton-based
SUNNonlinearSolver module is used, then the problem (2.38) will be solved using only a single Newton iteration. In this
case, an additional user-supplied argument indicates whether this Jacobian is time-dependent or not, signaling whether
the Jacobian or preconditioner needs to be recomputed at each stage or time step, or if it can be reused throughout the
full simulation.

The optimal choice of solver (Newton vs fixed-point) is highly problem dependent. Since fixed-point solvers do not
require the solution of linear systems involving the Jacobian of f, each iteration may be significantly less costly than their
Newton counterparts. However, this can come at the cost of slower convergence (or even divergence) in comparison with
Newton-like methods. While a Newton-based iteration is the default solver in ARKODE due to its increased robustness
on very stiff problems, we strongly recommend that users also consider the fixed-point solver when attempting a new
problem.

For either the Newton or fixed-point solvers, it is well-known that both the efficiency and robustness of the algorithm
intimately depend on the choice of a good initial guess. The initial guess for these solvers is a prediction zz(o) that is
computed explicitly from previously-computed data (e.g. y,—2, Yn—1, and z; where j < 7). Additional information on
the specific predictor algorithms is provided in section §2.15.5.

2.15.2 Linear solver methods

When a Newton-based method is chosen for solving each nonlinear system, a linear system of equations must be
solved at each nonlinear iteration. For this solve ARKODE leverages another component of the shared SUNDIALS
infrastructure, the “SUNLinearSolver,” described in section §10. These linear solver modules are grouped into two
categories: matrix-based linear solvers and matrix-free iterative linear solvers. ARKODE’s interfaces for linear solves
of these types are described in the subsections below.

2.15. Algebraic solvers 27



User Documentation for ARKODE, v6.2.1

2.15.2.1 Matrix-based linear solvers

In the case that a matrix-based linear solver is selected, a modified Newton iteration is utilized. In a modified Newton
iteration, the matrix A is held fixed for multiple Newton iterations. More precisely, each Newton iteration is computed
from the modified equation

A 2) 6m) = _q (z§m>) 7 (2.50)
in which
A(t,z)~ M(t) —7J(t,2), and 7=hA!, (ARKStep) (2.51)
or
SO C o .3 ik
A, Z2)~1—-~J(t,z), and =h = MRIStep).
(t,2) 3J(t, Z) 5 gl 2 ( P) (2.52)

Here, the solution Z, time £, and step size h upon which the modified equation rely, are merely values of these quantities
from a previous iteration. In other words, the matrix As only computed rarely, and reused for repeated solves. As
described below in section §2.15.2.3, the frequency at which Ais recomputed defaults to 20 time steps, but may be
modified by the user.

When using the dense and band SUNMatrix objects for the linear systems (2.50), the Jacobian J may be supplied
by a user routine, or approximated internally with finite-differences. In the case of differencing, we use the standard
approximation

fi(t:z+oje)) = fi(t:2)

Ji,j(tﬂ Z) ~ o )
J

where e; is the j-th unit vector, and the increments o; are given by
o
0j = max \/U|,zj|,—0 .
W

Here U is the unit roundoff, oy is a small dimensionless value, and w; is the error weight defined in (2.25). In the dense
case, this approach requires N evaluations of f’, one for each column of J. In the band case, the columns of .J are
computed in groups, using the Curtis-Powell-Reid algorithm, with the number of f! evaluations equal to the matrix
bandwidth.

We note that with sparse and user-supplied SUNMatrix objects, the Jacobian must be supplied by a user routine.

2.15.2.2 Matrix-free iterative linear solvers

In the case that a matrix-free iterative linear solver is chosen, an inexact Newton iteration is utilized. Here, the matrix
A is not itself constructed since the algorithms only require the product of this matrix with a given vector. Additionally,
each Newton system (2.46) is not solved completely, since these linear solvers are iterative (hence the “inexact” in the
name). As a result. for these linear solvers A is applied in a matrix-free manner,

Alt,2)v=M@)v—~J(t 2)v.

The mass matrix-vector products Mv must be provided through a user-supplied routine; the Jacobian matrix-vector
products Jv are obtained by either calling an optional user-supplied routine, or through a finite difference approximation
to the directional derivative:

it 2z +ov) — fi(t, 2)

t ~
J(t.2)0 - ,

where we use the increment o = 1/||v|| to ensure that ||ov|| = 1.

As with the modified Newton method that reused A between solves, the inexact Newton iteration may also recompute
the preconditioner P infrequently to balance the high costs of matrix construction and factorization against the reduced
convergence rate that may result from a stale preconditioner.

28 Chapter 2. Mathematical Considerations



User Documentation for ARKODE, v6.2.1

2.15.2.3 Updating the linear solver

In cases where recomputation of the Newton matrix Aor preconditioner P is lagged, these structures will be recomputed
only in the following circumstances:

* when starting the problem,
» when more than msbp = 20 steps have been taken since the last update (this value may be modified by the user),

* when the value ¥ of ~y at the last update satisfies |y/5 — 1| > Av,uq. = 0.2 (this value may be modified by the
user),

* when a non-fatal convergence failure just occurred,
* when an error test failure just occurred, or
* if the problem is linearly implicit and « has changed by a factor larger than 100 times machine epsilon.

When an update of A or P occurs, it may or may not involve a reevaluation of J (in A) or of Jacobian data (in P),
depending on whether errors in the Jacobian were the likely cause for the update. Reevaluating J (or instructing the
user to update P) occurs when:

e starting the problem,
* more than msbj = 50 steps have been taken since the last evaluation (this value may be modified by the user),

* a convergence failure occurred with an outdated matrix, and the value ¥ of ~ at the last update satisfies
v/7=11>02,

* aconvergence failure occurred that forced a step size reduction, or
« if the problem is linearly implicit and « has changed by a factor larger than 100 times machine epsilon.

However, for linear solvers and preconditioners that do not rely on costly matrix construction and factorization op-
erations (e.g. when using a geometric multigrid method as preconditioner), it may be more efficient to update these
structures more frequently than the above heuristics specify, since the increased rate of linear/nonlinear solver conver-
gence may more than account for the additional cost of Jacobian/preconditioner construction. To this end, a user may
specify that the system matrix A and/or preconditioner P should be recomputed more frequently.

As will be further discussed in section §2.15.4, in the case of most Krylov methods, preconditioning may be applied
on the left, right, or on both sides of .4, with user-supplied routines for the preconditioner setup and solve operations.

2.15.3 Iteration Error Control

2.15.3.1 Nonlinear iteration error control

ARKODE provides a customized stopping test to the SUNNonlinearSolver module used for solving equation (2.38).

This test is related to the temporal local error test, with the goal of keeping the nonlinear iteration errors from interfering
with local error control. Denoting the final computed value of each stage solution as zi(m)
(m)

i

, and the true stage solution

solving (2.38) as z;, we want to ensure that the iteration error z; — 2 is “small” (recall that a norm less than 1 is

already considered within an acceptable tolerance).

To this end, we first estimate the linear convergence rate R; of the nonlinear iteration. We initialize R; = 1, and reset it
(m—1) .
,ifm >0

i

to this value whenever A or P are updated. After computing a nonlinear correction §("™) = zZ(m) -z
we update R; as

R; <+ max {chi,

s o]}

where the default factor ¢, = 0.3 is user-modifiable.

2.15. Algebraic solvers 29



User Documentation for ARKODE, v6.2.1

Let y7(,,m) denote the time-evolved solution constructed using our approximate nonlinear stage solutions, zi(m), and let
y,(f)o) denote the time-evolved solution constructed using exact nonlinear stage solutions. We then use the estimate

‘ ylo) — yflm)H ~ max zi(mﬂ) - zfm) ~ max R; zi(m) - zi(m_l)H = max R; 5(m)H .
Therefore our convergence (stopping) test for the nonlinear iteration for each stage is
R H‘S(M)H <e (2.54)

where the factor € has default value 0.1. We default to a maximum of 3 nonlinear iterations. We also declare the
nonlinear iteration to be divergent if any of the ratios

P8/ > i (2.55)

with m > 0, where rg;, defaults to 2.3. If convergence fails in the nonlinear solver with 4 current (i.e., not lagged),
we reduce the step size h,, by a factor of 1.y = 0.25. The integration will be halted after max,.r = 10 convergence
failures, or if a convergence failure occurs with h,, = hmnin,. However, since the nonlinearity of (2.38) may vary
significantly based on the problem under consideration, these default constants may all be modified by the user.

2.15.3.2 Linear iteration error control

When a Krylov method is used to solve the linear Newton systems (2.46), its errors must also be controlled. To this
end, we approximate the linear iteration error in the solution vector 6" using the preconditioned residual vector, e.g.
r = PAS(™ 4 PG for the case of left preconditioning (the role of the preconditioner is further elaborated in the next
section). In an attempt to ensure that the linear iteration errors do not interfere with the nonlinear solution error and
local time integration error controls, we require that the norm of the preconditioned linear residual satisfies

€€

10"
Here € is the same value as that is used above for the nonlinear error control. The factor of 10 is used to ensure that
the linear solver error does not adversely affect the nonlinear solver convergence. Smaller values for the parameter €,
are typically useful for strongly nonlinear or very stifft ODE systems, while easier ODE systems may benefit from a
value closer to 1. The default value is e, = 0.05, which may be modified by the user. We note that for linearly implicit
problems the tolerance (2.56) is similarly used for the single Newton iteration.

[[r]] < (2.56)

2.15.4 Preconditioning

When using an inexact Newton method to solve the nonlinear system (2.38), an iterative method is used repeatedly
to solve linear systems of the form Ax = b, where x is a correction vector and b is a residual vector. If this iterative
method is one of the scaled preconditioned iterative linear solvers supplied with SUNDIALS, their efficiency may
benefit tremendously from preconditioning. A system .Ax = b can be preconditioned using any one of:

(P' Az =P ' [left preconditioning],
(AP HYPz =1 [right preconditioning],
(P 'APR Y Pra = P;'b [left and right preconditioning].

These Krylov iterative methods are then applied to a system with the matrix P~'A, AP, or P, L AP;!, instead of
A. In order to improve the convergence of the Krylov iteration, the preconditioner matrix P, or the product P, Pr in
the third case, should in some sense approximate the system matrix .A. Simultaneously, in order to be cost-effective the
matrix P (or matrices P, and Pgr) should be reasonably efficient to evaluate and solve. Finding an optimal point in this
trade-off between rapid convergence and low cost can be quite challenging. Good choices are often problem-dependent
(for example, see [22] for an extensive study of preconditioners for reaction-transport systems).

30 Chapter 2. Mathematical Considerations



User Documentation for ARKODE, v6.2.1

Most of the iterative linear solvers supplied with SUNDIALS allow for all three types of preconditioning (left, right
or both), although for non-symmetric matrices .4 we know of few situations where preconditioning on both sides is
superior to preconditioning on one side only (with the product P = Pr Pr). Moreover, for a given preconditioner
matrix, the merits of left vs. right preconditioning are unclear in general, so we recommend that the user experiment
with both choices. Performance can differ between these since the inverse of the left preconditioner is included in the
linear system residual whose norm is being tested in the Krylov algorithm. As a rule, however, if the preconditioner is
the product of two matrices, we recommend that preconditioning be done either on the left only or the right only, rather
than using one factor on each side. An exception to this rule is the PCG solver, that itself assumes a symmetric matrix A,
since the PCG algorithm in fact applies the single preconditioner matrix P in both left/right fashion as P~/2AP~1/2,

Typical preconditioners are based on approximations to the system Jacobian, J = 0 f/9y. Since the Newton iteration
matrix involved is A = M — ~.J, any approximation .J to .J yields a matrix that is of potential use as a preconditioner,
namely P = M — ~.J. Because the Krylov iteration occurs within a Newton iteration and further also within a time
integration, and since each of these iterations has its own test for convergence, the preconditioner may use a very
crude approximation, as long as it captures the dominant numerical features of the system. We have found that the
combination of a preconditioner with the Newton-Krylov iteration, using even a relatively poor approximation to the
Jacobian, can be surprisingly superior to using the same matrix without Krylov acceleration (i.e., a modified Newton
iteration), as well as to using the Newton-Krylov method with no preconditioning.

2.15.5 Implicit predictors

For problems with implicit components, a prediction algorithm is employed for constructing the initial guesses for each
implicit Runge—Kutta stage, zi(o). As is well-known with nonlinear solvers, the selection of a good initial guess can
have dramatic effects on both the speed and robustness of the solve, making the difference between rapid quadratic
convergence versus divergence of the iteration. To this end, a variety of prediction algorithms are provided. In each
case, the stage guesses zi(o) are constructed explicitly using readily-available information, including the previous step
solutions y,_1 and y,,_o, as well as any previous stage solutions z;, j < 4. In most cases, prediction is performed
by constructing an interpolating polynomial through existing data, which is then evaluated at the desired stage time to
provide an inexpensive but (hopefully) reasonable prediction of the stage solution. Specifically, for most Runge—Kutta

methods each stage solution satisfies
I
zi = y(tn,i)?

(similarly for MRI methods z; ~ y(tﬁ ;). so by constructing an interpolating polynomial p, (¢) through a set of existing
data, the initial guess at stage solutions may be approximated as

20 = py(tL,). (2.57)

As the stage times for MRI stages and implicit ARK and DIRK stages usually have non-negative abscissae (i.e., ¢! > 0),
it is typically the case that tfh ; (resp., t;f’ ;) is outside of the time interval containing the data used to construct p,(t),
hence (2.57) will correspond to an extrapolant instead of an interpolant. The dangers of using a polynomial interpolant
to extrapolate values outside the interpolation interval are well-known, with higher-order polynomials and predictions

further outside the interval resulting in the greatest potential inaccuracies.

The prediction algorithms available in ARKODE therefore construct a variety of interpolants p,(¢), having different
polynomial order and using different interpolation data, to support “optimal” choices for different types of problems, as
described below. We note that due to the structural similarities between implicit ARK and DIRK stages in ARKStep,
and solve-decoupled implicit stages in MRIStep, we use the ARKStep notation throughout the remainder of this section,
but each statement equally applies to MRIStep (unless otherwise noted).

2.15. Algebraic solvers 31



User Documentation for ARKODE, v6.2.1

2.15.5.1 Trivial predictor
The so-called “trivial predictor” is given by the formula

pO(t) = Yn—1-

While this piecewise-constant interpolant is clearly not a highly accurate candidate for problems with time-varying
solutions, it is often the most robust approach for highly stiff problems, or for problems with implicit constraints whose
violation may cause illegal solution values (e.g. a negative density or temperature).

2.15.5.2 Maximum order predictor
At the opposite end of the spectrum, ARKODE’s interpolation modules discussed in section §2.2 can be used to con-

struct a higher-order polynomial interpolant, p,(t). The implicit stage predictor is computed through evaluating the
highest-degree-available interpolant at each stage time tfm .

2.15.5.3 Variable order predictor
This predictor attempts to use higher-degree polynomials p,(t) for predicting earlier stages, and lower-degree inter-

polants for later stages. It uses the same interpolation module as described above, but chooses the polynomial degree
adaptively based on the stage index ¢, under the assumption that the stage times are increasing, i.e. c§ < cé for j < k:

g =max{qmax —t+1, 1}, i=1,...,s.

2.15.5.4 Cutoff order predictor

This predictor follows a similar idea as the previous algorithm, but monitors the actual stage times to determine the

h
polynomial interpolant to use for prediction. Denoting 7 = ¢/ —"—, the polynomial degree ¢; is chosen as:
n—1
4 = Qmax, 1 7 <73,
’ 1, otherwise.

2.15.5.5 Bootstrap predictor (M = I only) — deprecated

This predictor does not use any information from the preceding step, instead using information only within the current
step [tn—1,tn]. In addition to using the solution and ODE right-hand side function, y,,—1 and f(t,—1,Yn—1), this
approach uses the right-hand side from a previously computed stage solution in the same step, f(¢,—1 + CJI» h,zj) to

construct a quadratic Hermite interpolant for the prediction. If we define the constants h = c§ hand 7 = c!h, the
predictor is given by

© T T 7
z; =Yp—1+|7T—— tn_ s Yn— + — tn— + 25 ).
i = Yn—1 ( 2h> J(tn-1,Yn—1) th( 1 i)

For stages without a nonzero preceding stage time, i.e. c]I- # 0 for j < i, this method reduces to using the trivial

predictor zZ(O) = yn—1. For stages having multiple preceding nonzero cf , we choose the stage having largest c§ value,

to minimize the level of extrapolation used in the prediction.

We note that in general, each stage solution z; has significantly worse accuracy than the time step solutions y,_1, due
to the difference between the stage order and the method order in Runge—Kutta methods. As a result, the accuracy
of this predictor will generally be rather limited, but it is provided for problems in which this increased stage error is
better than the effects of extrapolation far outside of the previous time step interval [t,,_o, t,—1].

32 Chapter 2. Mathematical Considerations



User Documentation for ARKODE, v6.2.1

Although this approach could be used with non-identity mass matrix, support for that mode is not currently imple-
mented, so selection of this predictor in the case of a non-identity mass matrix will result in use of the trivial predictor.

Note

This predictor has been deprecated, and will be removed from a future release.

2.15.5.6 Minimum correction predictor (ARKStep, M/ = I only) — deprecated

The final predictor is not interpolation based; instead it utilizes all existing stage information from the current step to
create a predictor containing all but the current stage solution. Specifically, as discussed in equations (2.4) and (2.38),
each stage solves a nonlinear equation

i—1
Zz:yn—l‘i’hnZAfjfE n,jr~ +h ZA n]’ )

j=1

G(z) =z — hnAI g

n,ir 2 ')_a‘i:O'

This prediction method merely computes the predictor z; as

i—1
Zi:yn—l“i’hnZAiF{jfE n,jr % +h ZA nja )
j=1

Z; = Q.

Again, although this approach could be used with non-identity mass matrix, support for that mode is not currently
implemented, so selection of this predictor in the case of a non-identity mass matrix will result in use of the trivial
predictor.

Note

This predictor has been deprecated, and will be removed from a future release.

2.15.6 Mass matrix solver (ARKStep only)

Within the ARKStep algorithms described above, there are multiple locations where a matrix-vector product
b= Mv (2.58)
or a linear solve
=M1 (2.59)

is required.

Of course, for problems in which M = I both of these operators are trivial. However for problems with non-identity
mass matrix, these linear solves (2.59) may be handled using any valid SUNLinearSolver module, in the same manner
as described in the section §2.15.2 for solving the linear Newton systems.

For ERK methods involving non-identity mass matrix, even though calculation of individual stages does not require an
algebraic solve, both of the above operations (matrix-vector product, and mass matrix solve) may be required within

2.15. Algebraic solvers 33



User Documentation for ARKODE, v6.2.1

each time step. Therefore, for these users we recommend reading the rest of this section as it pertains to ARK methods,
with the obvious simplification that since f¥ = f and f! = 0 no Newton or fixed-point nonlinear solve, and no overall
system linear solve, is involved in the solution process.

At present, for DIRK and ARK problems using a matrix-based solver for the Newton nonlinear iterations, the type of
matrix (dense, band, sparse, or custom) for the Jacobian matrix J must match the type of mass matrix M, since these
are combined to form the Newton system matrix A. When matrix-based methods are employed, the user must supply
a routine to compute M (t) in the appropriate form to match the structure of A, with a user-supplied routine of type
ARKLsMassFn (). This matrix structure is used internally to perform any requisite mass matrix-vector products (2.58).

When matrix-free methods are selected, a routine must be supplied to perform the mass-matrix-vector product, Mv.
As with iterative solvers for the Newton systems, preconditioning may be applied to aid in solution of the mass matrix
systems (2.59). When using an iterative mass matrix linear solver, we require that the norm of the preconditioned linear
residual satisfies

7] < eLe, (2.60)

where again, € is the nonlinear solver tolerance parameter from (2.54). When using iterative system and mass matrix
linear solvers, €7, may be specified separately for both tolerances (2.56) and (2.60).

In the algorithmic descriptions above there are five locations where a linear solve of the form (2.59) is required: (a)
at each iteration of a fixed-point nonlinear solve, (b) in computing the Runge—Kutta right-hand side vectors f; FE and

2 , (¢) in constructing the time-evolved solution y,,, (d) in estimating the local temporal truncation error, and (e) in
constructing predictors for the implicit solver iteration (see section §2.15.5.2). We note that different nonlinear solver
approaches (i.e., Newton vs fixed-point) and different types of mass matrices (i.e., time-dependent versus fixed) result
in different subsets of the above operations. We discuss each of these in the bullets below.

* When using a fixed-point nonlinear solver, at each fixed-point iteration we must solve
M(tf”) (mtl) — g (zl(m)> , m=0,1,...
for the new fixed-point iterate, zi(mﬂ).

¢ In the case of a time-dependent mass matrix, to construct the Runge—Kutta right-hand side vectors we must solve
M(tgz)f _fE(nz’z> and M(tI )fI _f(nw )

for the vectors fiE and ff .

* For fixed mass matrices, we construct the time-evolved solution y,, from equation (2.4) by solving

My, = Myn 1+ hy Z b Pt s zi) + b5 f1 (th5 1))
=1

S

M(Yn = yn-1) = hnz (BFFEE 2i) + 0L 1t 4 20))

S

hnz bEfE nz? 7/)+be (71272))’
i=1

for the update v = y,, — Yn—1-

Similarly, we compute the local temporal error estimate 7;, from equation (2.28) by solving systems of the form

MT, _hZ[(bE bF) PR s z0) + (0 = BF) 1 (th o) - 2.61)

34 Chapter 2. Mathematical Considerations



User Documentation for ARKODE, v6.2.1

* For problems with either form of non-identity mass matrix, in constructing dense output and implicit predictors of
degree 2 or higher (see the section §2.15.5.2 above), we compute the derivative information f; from the equation

In total, for problems with fixed mass matrix, we require only two mass-matrix linear solves (2.59) per attempted
time step, with one more upon completion of a time step that meets the solution accuracy requirements. When fixed
time-stepping is used (h,, = h), the solve (2.61) is not performed at each attempted step.

Similarly, for problems with time-dependent mass matrix, we require 2s mass-matrix linear solves (2.59) per attempted
step, where s is the number of stages in the ARK method (only half of these are required for purely explicit or purely
implicit problems, (2.5) or (2.6)), with one more upon completion of a time step that meets the solution accuracy
requirements.

In addition to the above totals, when using a fixed-point nonlinear solver (assumed to require m iterations), we will
need an additional ms mass-matrix linear solves (2.59) per attempted time step (but zero linear solves with the system
Jacobian).

2.16 Rootfinding

ARKODE also supports a rootfinding feature, in that while integrating the IVP (2.1), these can also find the roots of
a set of user-defined functions g;(¢, y) that depend on ¢ and the solution vector y = y(¢). The number of these root
functions is arbitrary, and if more than one g; is found to have a root in any given interval, the various root locations
are found and reported in the order that they occur on the ¢ axis, in the direction of integration.

Generally, this rootfinding feature finds only roots of odd multiplicity, corresponding to changes in sign of g;(t, y(t)),
denoted g; (t) for short. If a user root function has a root of even multiplicity (no sign change), it will almost certainly
be missed due to the realities of floating-point arithmetic. If such a root is desired, the user should reformulate the root
function so that it changes sign at the desired root.

The basic scheme used is to check for sign changes of any g;(t) over each time step taken, and then (when a sign change
is found) to home in on the root (or roots) with a modified secant method [55]. In addition, each time g is evaluated,
ARKODE checks to see if g;(¢t) = 0 exactly, and if so it reports this as a root. However, if an exact zero of any g; is
found at a point ¢, ARKODE computes g(t + ¢) for a small increment §, slightly further in the direction of integration,
and if any g, (¢ + ) = 0 also, ARKODE stops and reports an error. This way, each time ARKODE takes a time step, it
is guaranteed that the values of all g; are nonzero at some past value of ¢, beyond which a search for roots is to be done.

At any given time in the course of the time-stepping, after suitable checking and adjusting has been done, ARKODE
has an interval (¢, tpi] in which roots of the g;(t) are to be sought, such that ty; is further ahead in the direction of
integration, and all g;(¢,) # 0. The endpoint ty; is either ¢,,, the end of the time step last taken, or the next requested
output time ¢, if this comes sooner. The endpoint ¢y, is either ¢,,_1, or the last output time ¢, (if this occurred within
the last step), or the last root location (if a root was just located within this step), possibly adjusted slightly toward ¢,,
if an exact zero was found. The algorithm checks g(ty;) for zeros, and it checks for sign changes in (¢, th ). If no sign
changes are found, then either a root is reported (if some g; (tn;) = 0) or we proceed to the next time interval (starting at
thi). If one or more sign changes were found, then a loop is entered to locate the root to within a rather tight tolerance,
given by

7 =100U (|tn| + |h|) (where U = unit roundoff).

Whenever sign changes are seen in two or more root functions, the one deemed most likely to have its root occur first
is the one with the largest value of |g; (tni)| / |gi (tni) — gi(tio)], corresponding to the closest to ¢, of the secant method
values. Ateach pass through the loop, a new value ¢4 is set, strictly within the search interval, and the values of g; (tmia)
are checked. Then either ¢, or ty; is reset to ¢y,;q according to which subinterval is found to have the sign change. If

2.16. Rootfinding 35



User Documentation for ARKODE, v6.2.1

there is none in (¢, tmia) but some g;(tmia) = O, then that root is reported. The loop continues until |ty — t10] < T,
and then the reported root location is tp;. In the loop to locate the root of g;(¢), the formula for ¢4 is

t id = th' - )
o Y gi(th) — agi(to)

where « is a weight parameter. On the first two passes through the loop, « is set to 1, making t,;q the secant method
value. Thereafter, « is reset according to the side of the subinterval (low vs high, i.e. toward ¢, vs toward ty;) in which
the sign change was found in the previous two passes. If the two sides were opposite, « is set to 1. If the two sides
were the same, « is halved (if on the low side) or doubled (if on the high side). The value of ¢, is closer to ¢}, when
a < 1 and closer to t,; when o > 1. If the above value of 4 is within 7/2 of ¢, or ty;, it is adjusted inward, such
that its fractional distance from the endpoint (relative to the interval size) is between 0.1 and 0.5 (with 0.5 being the
midpoint), and the actual distance from the endpoint is at least 7/2.

Finally, we note that when running in parallel, ARKODE'’s rootfinding module assumes that the entire set of root
defining functions g; (¢, y) is replicated on every MPI rank. Since in these cases the vector y is distributed across ranks,
it is the user’s responsibility to perform any necessary communication to ensure that g; (¢, y) is identical on each rank.

2.17 Inequality Constraints

The ARKStep and ERKStep modules in ARKODE permit the user to impose optional inequality constraints on individ-
ual components of the solution vector y. Any of the following four constraints can be imposed: y; > 0, y; < 0,y; > 0,
or y; < 0. The constraint satisfaction is tested after a successful step and before the error test. If any constraint fails, the
step size is reduced and a flag is set to update the Jacobian or preconditioner if applicable. Rather than cutting the step
size by some arbitrary factor, ARKODE estimates a new step size h’ using a linear approximation of the components
in y that failed the constraint test (including a safety factor of 0.9 to cover the strict inequality case). If a step fails to
satisfy the constraints 10 times (a value which may be modified by the user) within a step attempt, or fails with the
minimum step size, then the integration is halted and an error is returned. In this case the user may need to employ
other strategies as discussed in §5.3.2 to satisfy the inequality constraints.

2.18 Relaxation Methods

When the solution of (2.1) is conservative or dissipative with respect to a smooth convex function &(y(t)), it is desirable
to have the numerical method preserve these properties. That is £(y,,) = &(yn—1) = ... = &(yo) for conservative
systems and &(y,,) < &(yn—1) for dissipative systems. For examples of such problems, see the references below and
the citations there in.

For such problems, ARKODE supports relaxation methods [62, 68, 80, 81] applied to ERK, DIRK, or ARK methods
to ensure dissipation or preservation of the global function. The relaxed solution is given by

Yr = Yn—1 +rd =71yn + (1 — 1)yn_1 (2.62)

where d is the update to y,, (i.e., hy, >0, (bF fF + bl fI) for ARKStep and h,, 37, b; f; for ERKStep) and 7 is the
relaxation factor selected to ensure conservation or dissipation. Given an ERK, DIRK, or ARK method of at least
second order with non-negative solution weights (i.e., b; > 0 for ERKStep or blE > 0 and bil > 0 for ARKStep), the
factor r is computed by solving the auxiliary scalar nonlinear system

F(r)=&yn—1+7d) —&(Yn-1) —re =0 (2.63)

at the end of each time step. The estimated change in & is given by e = h,, Y5, (€/(2:),bF fE + bl f]) where ¢’ is the
Jacobian of &.

Two iterative methods are provided for solving (2.63), Newton’s method and Brent’s method. When using Newton’s
method (the default), the iteration is halted either when the residual tolerance is met, F' (r(k)) < €relax_res,» OF When

36 Chapter 2. Mathematical Considerations



User Documentation for ARKODE, v6.2.1

the difference between successive iterates satisfies the relative and absolute tolerances, |6,(>k)\ = |rtk) —pl=1)| <
erelaxfrtoﬂr(k_l)\ + €relax_atol- Brent’s method applies the same residual tolerance check and additionally halts when
the bisection update satisfies the relative and absolute tolerances, |[0.5(r. — rk) | < €relax_rtol |r(k) |+0.5€ elax_ato] Where
r. and r*) bound the root.

If the nonlinear solve fails to meet the specified tolerances within the maximum allowed number of iterations, the step
size is reduced by the factor 7, (default 0.25) and the step is repeated. Additionally, the solution of (2.63) should be
r =1+ O(h4~1) for a method of order ¢ [81]. As such, limits are imposed on the range of relaxation values allowed
(i.e., limiting the maximum change in step size due to relaxation). A relaxation value greater than ¢ (default 1.2) or
less than ry,;, (default 0.8), is considered as a failed relaxation application and the step will is repeated with the step
size reduced by 7.

For more information on utilizing relaxation Runge—Kutta methods, see §5.5.

2.18. Relaxation Methods 37



User Documentation for ARKODE, v6.2.1

38 Chapter 2. Mathematical Considerations



Chapter 3

Code Organization

The ARKODE package is written in the ANSI C language. The following summarizes the basic structure of the package,
although knowledge of this structure is not necessary for its use.

The overall organization of the ARKODE package is shown in Fig. 3.1. The central integration modules, implemented in
the files arkode.h, arkode_impl.h, arkode_butcher.h, arkode.c, arkode_arkstep.c, arkode_erkstep.c,
arkode_mristep.c, arkode_sprkstep.c, and arkode_butcher. c, deal with the evaluation of integration stages,
the nonlinear solvers, estimation of the local truncation error, selection of step size, and interpolation to user output
points, among other issues. ARKODE supports SUNNonlinearSolver modules in either root-finding or fixed-point
form (see section §11) for any nonlinearly implicit problems that arise in computing each internal stage. When using
Newton-based nonlinear solvers, or when using a non-identity mass matrix M # I, ARKODE has flexibility in the
choice of method used to solve the linear sub-systems that arise. Therefore, for any user problem invoking the Newton
solvers, or any user problem with M # I, one (or more) of the linear system solver modules should be specified by the
user; this/these are then invoked as needed during the integration process.

SUNDIALS

ARKODE
| '
ARKLS ARKNLS
Linear Solver Interface Nonlinear Solver Interface

Vector | | Matrix | | Linear Solver | | Nonlinear Solver

A\ 4

Preconditioner Modules
( ARKBBDPRE || ARKBANDPRE |

Fig. 3.1: ARKODE organization: Overall structure of the ARKODE package. Modules specific to ARKODE are
the core infrastructure and timesteppers (ARKODE), linear solver interfaces (ARKLS), nonlinear solver interfaces
(ARKNLS), and preconditioners (ARKBANDPRE and ARKBBDPRE); all other items correspond to generic SUN-
DIALS vector, matrix, and solver modules.

39



User Documentation for ARKODE, v6.2.1

For solving these linear systems, ARKODE'’s linear solver interface supports both direct and iterative linear solvers
adhering to the generic SUNLINSOL API (see §10). These solvers may utilize a SUNMATRIX object for storing
Jacobian information, or they may be matrix-free. Since ARKODE can operate on any valid SUNLINSOL implemen-
tation, the set of linear solver modules available to ARKODE will expand as new SUNLINSOL modules are developed.

For preconditioned iterative methods with either the system or mass matrix solves, the preconditioning must be supplied
by the user in two phases: setup and solve. While there is no default choice of preconditioner for generic problems, the
references [22] and [25], together with the example and demonstration programs included with ARKODE and CVODE,
offer considerable assistance in building simple preconditioners.

ARKODE also provides two rudimentary preconditioner modules, for use with any of the Krylov iterative linear solvers.
The first, ARKBANDPRE is intended to be used with the serial or threaded vector data structures (NVECTOR_SE-
RIAL, NVECTOR_OPENMP and NVECTOR_PTHREADS), and provides a banded difference-quotient approxima-
tion to the Jacobian as the preconditioner, with corresponding setup and solve routines. The second preconditioner
module, ARKBBDPRE, is intended to work with the parallel vector data structure, NVECTOR_PARALLEL, and gen-
erates a preconditioner that is a block-diagonal matrix with each block being a band matrix owned by a single processor.

All state information used by ARKODE to solve a given problem is saved in a single opaque memory structure, and a
pointer to that structure is returned to the user. For C, C++ and Fortran 2003 applications there is no global data in the
ARKODE package, and so in this respect it is reentrant. State information specific to the linear solver interface is saved
in a separate data structure, a pointer to which resides in the ARKODE memory structure. State information specific
to the linear solver implementation (and matrix implementation, if applicable) are stored in their own data structures,
that are returned to the user upon construction, and subsequently provided to ARKODE for use.

40 Chapter 3. Code Organization



Chapter 4

Getting Started

The packages that make up SUNDIALS are built upon shared classes for vectors, matrices, and algebraic solvers. In
addition, the packages all leverage some other common infrastructure, which we discuss in this section.

SUNDIALS

v

v v

v v

[ CVODE ]

[ CVODES ] [ ARKODE ] [

IDA

] [ KINSOL ]

!
1 ]

.

)

[
[
[
[
[
[
[
[

[ ]
[ )

Trilinos

Matrix-fre

[

)

—

SPTFQMR SPBCG ]

Fig. 4.1: High-level diagram of the SUNDIALS suite.

Vectors Matrices Linear Solvers Nonlinear Solvers
Serial ] [ Parallel (MPI) ] [ Dense ] [ Band ] Matrix-based rton ] [ Fixed Point
ervesce ) (_opanite | |(sweme ) (S | |LLoeree J[[_we ]
LAPACK LAPACK
OpenMP DEV ] [ CUDA ] [ cuSPARSE ] [MAGMA Dense] [ Dense ][ Band ]
SuperLU
HIP ] [ RAJA ] [Ginkgo Dense] [oneMKL Dense] KLY
Kokkos ] [ syYcL ] [ s“,;g‘f,'.'u ][ CuSOLVER ]
ManyVector ][MPI ManyVector] [MAGMA Dense][ Ginkgo ]
MPI + X ] Rarkhyp [oneMKL Dense] [Kokkok Kernel ]

41



User Documentation for ARKODE, v6.2.1

4.1 Data Types

SUNDIALS defines several data types in the header file sundials_types.h. These types are used in the SUNDIALS
API and internally in SUNDIALS. It is not necessary to use these types in your application, but the type must be
compatible with the SUNDIALS types in the API when calling SUNDIALS functions. The types that are defined are:

* sunrealtype — the floating-point type used by the SUNDIALS packages
» sunindextype — the integer type used for vector and matrix indices

* sunbooleantype — the type used for logic operations within SUNDIALS
* SUNOutputFormat — an enumerated type for SUNDIALS output formats

* SUNComm — a simple typedef to an int when SUNDIALS is built without MPI, or a MPI_Comm when built with
MPL

4.1.1 Floating point types

type sunrealtype

The type sunrealtype can be float, double, or long double, with the default being double. The user can
change the precision of the arithmetic used in the SUNDIALS solvers at the configuration stage (see SUNDIALS_-
PRECISION).

Additionally, based on the current precision, sundials_types.h defines SUN_BIG_REAL to be the largest value rep-
resentable as a sunrealtype, SUN_SMALL_REAL to be the smallest value representable as a sunrealtype, and SUN_-
UNIT_ROUNDOFF to be the difference between 1.0 and the minimum sunrealtype greater than 1.0.

Within SUNDIALS, real constants are set by way of a macro called SUN_RCONST. It is this macro that needs the ability
to branch on the definition of sunrealtype. In ANSI C, a floating-point constant with no suffix is stored as a double.
Placing the suffix “F” at the end of a floating point constant makes it a float, whereas using the suffix “L” makes it a
long double. For example,

#define A 1.0
#define B 1.0F
#define C 1.0L

defines A to be a double constant equal to 1.0, B to be a float constant equal to 1.0, and C to be a long double
constant equal to 1.0. The macro call SUN_RCONST(1.0) automatically expands to 1.0 if sunrealtype is double,
to 1.0F if sunrealtype is float, or to 1.0L if sunrealtype is long double. SUNDIALS uses the SUN_RCONST
macro internally to declare all of its floating-point constants.

Additionally, SUNDIALS defines several macros for common mathematical functions e.g., fabs, sqrt, exp, etc.
in sundials_math.h. The macros are prefixed with SUNR and expand to the appropriate C function based on the
sunrealtype. For example, the macro SUNRabs expands to the C function fabs when sunrealtype is double,
fabsf when sunrealtype is float, and fabsl when sunrealtype is long double.

A user program which uses the type sunrealtype, the SUN_RCONST macro, and the SUNR mathematical function
macros is precision-independent except for any calls to precision-specific library functions. Our example programs use
sunrealtype, SUN_RCONST, and the SUNR macros. Users can, however, use the type double, float, or long double
in their code (assuming that this usage is consistent with the typedef for sunrealtype) and call the appropriate math
library functions directly. Thus, a previously existing piece of C or C++ code can use SUNDIALS without modifying
the code to use sunrealtype, SUN_RCONST, or the SUNR macros so long as the SUNDIALS libraries are built to use
the corresponding precision (see §16.2).

42 Chapter 4. Getting Started



User Documentation for ARKODE, v6.2.1

4.1.2 Integer types used for indexing

type sunindextype

The type sunindextype is used for indexing array entries in SUNDIALS modules as well as for storing the total
problem size (e.g., vector lengths and matrix sizes). During configuration sunindextype may be selected to be
either a 32- or 64-bit signed integer with the default being 64-bit (see SUNDIALS_INDEX_SIZE).

When using a 32-bit integer the total problem size is limited to 23! — 1 and with 64-bit integers the limit is 263 — 1.
For users with problem sizes that exceed the 64-bit limit an advanced configuration option is available to specify the
type used for sunindextype (see SUNDIALS_INDEX_TYPE).

A user program which uses sunindextype to handle indices will work with both index storage types except for any calls
to index storage-specific external libraries. Our C and C++ example programs use sunindextype. Users can, however,
use any compatible type (e.g., int, long int, int32_t, int64_t, or long long int) in their code, assuming that
this usage is consistent with the typedef for sunindextype on their architecture. Thus, a previously existing piece of
C or C++ code can use SUNDIALS without modifying the code to use sunindextype, so long as the SUNDIALS
libraries use the appropriate index storage type (for details see §16.2).

4.1.3 Boolean type

type sunbooleantype

As ANSI C89 (ISO C90) does not have a built-in boolean data type, SUNDIALS defines the type sunboolean-
type as an int.

The advantage of using the name sunbooleantype (instead of int) is an increase in code readability. It also allows the
programmer to make a distinction between int and boolean data. Variables of type sunbooleantype are intended to
have only the two values: SUNFALSE or SUNTRUE.

SUNFALSE
False (0)

SUNTRUE
True (1)

4.1.4 Output formatting type

enum SUNOutputFormat
The enumerated type SUNOutputFormat defines the enumeration constants for SUNDIALS output formats

enumerator SUN_OUTPUTFORMAT_TABLE

The output will be a table of values

enumerator SUN_OUTPUTFORMAT_CSV
The output will be a comma-separated list of key and value pairs e.g., keyl,valuel,key2,value2,...

Note

The Python module tools/suntools provides utilities to read and output the data from a SUNDIALS CSV
output file using the key and value pair format.

4.1. Data Types 43



User Documentation for ARKODE, v6.2.1

4.1.5 MPI types

type SUNComm

A simple typedef to an int when SUNDIALS is built without MPI, or a MPI_Comm when built with MPI. This
type exists solely to ensure SUNDIALS can support MPI and non-MPI builds.

SUN_COMM_NULL
A macro defined as ® when SUNDIALS is built without MPI, or as MPI_COMM_NULL when built with MPI.

4.2 The SUNContext Type

Added in version 6.0.0.

All of the SUNDIALS objects (vectors, linear and nonlinear solvers, matrices, etc.) that collectively form a SUNDIALS
simulation, hold a reference to a common simulation context object defined by the SUNContext class.

type SUNContext

An opaque pointer used by SUNDIALS objects for error handling, logging, profiling, etc.
Users should create a SUNContext object prior to any other calls to SUNDIALS library functions by calling:
SUNErrCode SUNContext_Create (SUNComm comm, SUNContext *sunctx)

Creates a SUNContext object associated with the thread of execution. The data of the SUNContext class is

private.
Parameters
» comm — the MPI communicator or SUN_COMM_NULL if not using MPL
* sunctx — [in,out] upon successful exit, a pointer to the newly created SUNContext object.
Returns

SUNErrCode indicating success or failure.

The created SUNContext object should be provided to the constructor routines for different SUNDIALS
classes/modules e.g.,

SUNContext sunctx;
void* package_mem;
N_Vector x;

SUNContext_Create(SUN_COMM_NULL, &sunctx);

package_mem = CVodeCreate(..., sunctx);
package_mem = IDACreate(..., sunctx);
package_mem = KINCreate(..., sunctx);
package_mem = ARKStepCreate(..., sunctx);
X = N_VNew_<SomeVector>(..., sunctx);

After all other SUNDIALS code, the SUNContext object should be freed with a call to:

SUNErrCode SUNContext_Free(SUNContext *sunctx)
Frees the SUNContext object.

Parameters

* sunctx — pointer to a valid SUNContext object, NULL upon successful return.

44 Chapter 4. Getting Started



User Documentation for ARKODE, v6.2.1

Returns
SUNErrCode indicating success or failure.

Warning

When MPI is being used, the SUNContext_Free () must be called prior to MPI_Finalize.

The SUNContext API further consists of the following functions:

SUNErrCode SUNContext_GetLastError (SUNContext sunctx)
Gets the last error code set by a SUNDIALS function call. The function then resets the last error code to SUN_-
SUCCESS.

Parameters

* sunctx — a valid SUNContext object.

Returns
the last SUNErrCode recorded.

SUNErrCode SUNContext_PeekLastError (SUNContext sunctx)
Gets the last error code set by a SUNDIALS function call. The function does not reset the last error code to
SUN_SUCCESS.

Parameters
* sunctx — a valid SUNContext object.

Returns
the last SUNErrCode recorded.

SUNErrCode SUNContext_PushErrHandler (SUNContext sunctx, SUNErrHandlerFn err_fn, void
*err_user_data)

Pushes a new SUNErrHandlerFn onto the error handler stack so that it is called when an error occurs inside of
SUNDIALS.

Parameters
* sunctx — a valid SUNContext object.

» err_fn - a callback function of type SUNErrHandlerFn to be pushed onto the error handler
stack.

* err_user_data — a pointer that will be passed back to the callback function when it is
called.

Returns
SUNErrCode indicating success or failure.

SUNErrCode SUNContext_PopErrHandler (SUNContext sunctx)
Pops the last SUNErrHandlerFn off of the error handler stack.

Parameters

* sunctx — a valid SUNContext object.

Returns
SUNErrCode indicating success or failure.

4.2. The SUNContext Type 45



User Documentation for ARKODE, v6.2.1

SUNErrCode SUNContext_ClearErrHandlers (SUNContext sunctx)

Clears the entire error handler stack. After doing this it is important to push an error handler onto the stack with
SUNContext_PushErrHandler otherwise errors will be ignored.

Parameters
* sunctx — a valid SUNContext object.

Returns
SUNErrCode indicating success or failure.

SUNErrCode SUNContext_GetProfiler (SUNContext sunctx, SUNProfiler *profiler)
Gets the SUNProfiler object associated with the SUNContext object.

Parameters
* sunctx — a valid SUNContext object.

» profiler - [in,out] a pointer to the SUNProfiler object associated with this context; will
be NULL if profiling is not enabled.

Returns
SUNErrCode indicating success or failure.

SUNErrCode SUNContext_SetProfiler (SUNContext sunctx, SUNProfiler profiler)
Sets the SUNProfiler object associated with the SUNContext object.

Parameters
* sunctx — a valid SUNContext object.

» profiler — a SUNProfiler object to associate with this context; this is ignored if profiling
is not enabled.

Returns
SUNErrCode indicating success or failure.

SUNErrCode SUNContext_SetLogger (SUNContext sunctx, SUNLogger logger)
Sets the SUNLogger object associated with the SUNContext object.

Parameters
* sunctx — a valid SUNContext object.

* logger — a SUNLogger object to associate with this context; this is ignored if logging is not
enabled.

Returns
SUNErrCode indicating success or failure.

Added in version 6.2.0.

SUNErrCode SUNContext_GetLogger (SUNContext sunctx, SUNLogger *logger)
Gets the SUNLogger object associated with the SUNContext object.

Parameters
* sunctx — a valid SUNContext object.

* logger - [in,out] a pointer to the SUNLogger object associated with this context; will be
NULL if logging is not enabled.

Returns
SUNErrCode indicating success or failure.

Added in version 6.2.0.

46 Chapter 4. Getting Started



User Documentation for ARKODE, v6.2.1

4.2.1 Implications for task-based programming and multi-threading

Applications that need to have concurrently initialized SUNDIALS simulations need to take care to understand the
following:

1. A SUNContext object must only be associated with one SUNDIALS simulation (a solver object and its associated
vectors etc.) at a time.

* Concurrently initialized is not the same as concurrently executing. Even if two SUNDIALS simulations
execute sequentially, if both are initialized at the same time with the same SUNContext, behavior is unde-
fined.

* Jtis OK to reuse a SUNContext object with another SUNDIALS simulation after the first simulation has
completed and all of the simulation’s associated objects (vectors, matrices, algebraic solvers, etc.) have
been destroyed.

2. The creation and destruction of a SUNContext object is cheap, especially in comparison to the cost of creat-
ing/destroying a SUNDIALS solver object.

The following (incomplete) code examples demonstrate these points using CVODE as the example SUNDIALS pack-
age.

SUNContext sunctxs[num_threads];
int cvode_initialized[num_threads];
void* cvode_mem[num_threads];

// Create

for (int i = 0; i < num_threads; i++) {
sunctxs[i] = SUNContext_Create(...);
cvode_mem[i] = CVodeCreate(..., sunctxs[i]);
cvode_initialized[i] = 0; // not yet initialized
// set optional cvode inputs...

}

// Solve

#pragma omp parallel for

for (int i = 0; i < num_problems; i++) {
int retval = 0;
int tid = omp_get_thread_num();
if (!cvode_initialized[tid]) {

retval = CVodeInit(cvode_mem[tid], ...);
cvode_initialized[tid] = 1;
} else {
retval = CVodeReInit(cvode_mem[tid], ...);
}
CVode(cvode_mem[i], ...);
3
// Destroy

for (int i = 0; i1 < num_threads; i++) {
// get optional cvode outputs...
CVodeFree (&cvode_mem[i]);
SUNContext_Free(&sunctxs[i]);

}

Since each thread has its own unique CVODE and SUNContext object pair, there should be no thread-safety issues.
Users should be sure that you apply the same idea to the other SUNDIALS objects needed as well (e.g. an N_Vector).

4.2. The SUNContext Type 47



User Documentation for ARKODE, v6.2.1

The variation of the above code example demonstrates another possible approach:

// Create, Solve, Destroy

#pragma omp parallel for

for (int i = 0; i < num_problems; i++) {
int retval = 0;
void* cvode_mem;
SUNContext sunctx;

sunctx = SUNContext_Create(...);
cvode_mem = CVodeCreate(..., sunctx);
retval = CVodeInit(cvode_mem, ...);
// set optional cvode inputs...
CVode(cvode_mem, ...);

// get optional cvode outputs...

CVodeFree (&cvode_mem) ;
SUNContext_Free(&sunctx) ;

So long as the overhead of creating/destroying the CVODE object is small compared to the cost of solving the ODE,
this approach is a fine alternative to the first approach since SUNContext_Create() and SUNContext_Free() are

much cheaper than the CVODE create/free routines.

4.2.2 Convenience class for C++ Users

For C++ users a RAII safe class, sundials: :Context, is provided:

namespace sundials {

class Context : public sundials::ConvertibleTo<SUNContext>
{
public:
explicit Context(SUNComm comm = SUN_COMM_NULL)
{
sunctx_ = std::make_unique<SUNContext>();
SUNContext_Create(comm, sunctx_.get());

}

/% disallow copy, but allow move construction */
Context(const Context&) = delete;
Context (Context&&) = default;

/% disallow copy, but allow move operators */
Context& operator=(const Context&) = delete;
Context& operator=(Context&&) = default;

SUNContext Convert() override

{

return “sunctx_.get();

(continues on next page)

48

Chapter 4. Getting Started



User Documentation for ARKODE, v6.2.1

¥

SUNContext Convert() const override

{

return “sunctx_.get();

}

operator SUNContext() override

{

return “sunctx_.get();

}

operator SUNContext() const override

{

return “sunctx_.get();

}

~Context()
{

if (sunctx_) SUNContext_Free(sunctx_.get());

¥

private:
std: :unique_ptr<SUNContext> sunctx_;
};

} // namespace sundials

4.3 Error Checking

Added in version 7.0.0.

(continued from previous page)

Until version 7.0.0, error reporting and handling was inconsistent throughout SUNDIALS. Starting with version 7.0.0
all of SUNDIALS (the core, implementations of core modules, and packages) reports error messages through the
SUNLogger API. Furthermore, functions in the SUNDIALS core API (i.e., SUN or N_V functions only) either return a
SUNErrCode, or (if they don’t return a SUNErrCode) they internally record an error code (if an error occurs) within
the SUNContext for the execution stream. This “last error” is accessible via the SUNContext_GetLastError() or

SUNContext_PeekLastError() functions.

typedef int SUNErrCode

Thus, in user code, SUNDIALS core API functions can be checked for errors in one of two ways:

SUNContext sunctx;
SUNErrCode sunerr;
N_Vector v;

int length;
sunrealtype dotprod;

// Every code that uses SUNDIALS must create a SUNContext.

sunctx = SUNContext_Create(...);

// Create a SUNDIALS serial vector.

// Some functions do not return an error code.

(continues on next page)

4.3. Error Checking

49



User Documentation for ARKODE, v6.2.1

(continued from previous page)
// We have to check for errors in these functions using SUNContext_GetLastError.
length = 2;
v = N_VNew_Serial(length, sunctx);
sunerr = SUNContext_GetLastError(sunctx);
if (sunerr) { /* an error occurred, do something */ }

// If the function returns a SUNErrCode, we can check it directly
sunerr = N_VLinearCombination(...);
if (sunerr) { /* an error occurred, do something */ }

// Another function that does not return a SUNErrCode.
dotprod = N_VDotProd(...);
SUNContext_GetLastError(sunctx);
if (sunerr) {
/* an error occurred, do something */
} else {
print("dotprod = %.2f\n", dotprod);
}

The function SUNGetErrMsg () can be used to get a message describing the error code.

const char *SUNGetErrMsg (SUNErrCode code)

Returns a message describing the error code.
Parameters
* code — the error code

Returns
a message describing the error code.

Note

It is recommended in most cases that users check for an error after calling SUNDIALS functions. However, users
concerned with getting the most performance might choose to exclude or limit these checks.

Warning

If a function returns a SUNErrCode then the return value is the only place the error is available i.e., these functions
do not store their error code as the “last error” so it is invalid to use SUNContext_GetLastError () to check these
functions for errors.

50 Chapter 4. Getting Started



User Documentation for ARKODE, v6.2.1

4.3.1 Error Handler Functions

When an error occurs in SUNDIALS, it calls error handler functions that have been pushed onto the error handler
stack in last-in first-out order. Specific error handlers can be enabled by pushing them onto the error handler stack with
the function SUNContext_PushErrHandler (). They may disabled by calling SUNContext_PopErrHandler() or
SUNContext_ClearErrHandlers(). A SUNDIALS error handler function has the type

typedef void (*SUNErrHandlerFn)(int line, const char *func, const char *file, const char *msg, SUNErrCode
err_code, void *err_user_data, SUNContext sunctx)

SUNDIALS provides a few different error handlers that can be used, or a custom one defined by the user can be
provided (useful for linking SUNDIALS errors to your application’s error handling). The default error handler is
SUNLogErrHandlerFn() which logs an error to a specified file or stderr if no file is specified.

The error handlers provided in SUNDIALS are:

void SUNLogErrHandlerFn(int line, const char *func, const char *file, const char *msg, SUNErrCode err_code,
void *err_user_data, SUNContext sunctx)

Logs the error that occurred using the SUNLogger from sunctx. This is the default error handler.
Parameters
* line - the line number at which the error occurred
 func - the function in which the error occurred
e file - the file in which the error occurred

* msg — the message to log, if this is NULL then the default error message for the error code
will be used

* err_code - the error code for the error that occurred
» err_user_data — the user pointer provided to SUNContext_PushErrHandler ()
* sunctx — pointer to a valid SUNContext object

Returns
void

void SUNAbortErrHandlerFn (int line, const char *func, const char *file, const char *msg, SUNErrCode err_code,
void *err_user_data, SUNContext sunctx)

Logs the error and aborts the program if an error occurred.
Parameters

* line - the line number at which the error occurred
 func - the function in which the error occurred
o file - the file in which the error occurred
* msg — this parameter is ignored
e err_code - the error code for the error that occurred
* err_user_data - the user pointer provided to SUNContext_PushErrHandler ()
* sunctx — pointer to a valid SUNContext object

Returns
void

4.3. Error Checking 51



User Documentation for ARKODE, v6.2.1

void SUNMPIAbortErrHandlerFn(int line, const char *func, const char *file, const char *msg, SUNErrCode
err_code, void *err_user_data, SUNContext sunctx)

Logs the error and calls MPI_Abort if an error occurred.
Parameters

* line - the line number at which the error occurred
 func - the function in which the error occurred
e file - the file in which the error occurred
* msg — this parameter is ignored
» err_code - the error code for the error that occurred
* err_user_data - the user pointer provided to SUNContext_PushErrHandler ()
* sunctx — pointer to a valid SUNContext object

Returns
void

4.4 Status and Error Logging

Added in version 6.2.0.

SUNDIALS includes a built-in logging functionality which can be used to direct error messages, warning messages,
informational output, and debugging output to specified files. This capability requires enabling both build-time and
run-time options to ensure the best possible performance is achieved.

4.4.1 Enabling Logging

To enable logging, the CMake option SUNDIALS_LOGGING_LEVEL must be set to the maximum desired output level
when configuring SUNDIALS. See the SUNDIALS_LOGGING_LEVEL documentation for the numeric values corre-
sponding to errors, warnings, info output, and debug output where errors < warnings < info output < debug output
< extra debug output. By default only warning and error messages are logged.

Note

As of version 7.0.0, enabling MPI in SUNDIALS enables MPI-aware logging.

When SUNDIALS is built with logging enabled, then the default logger (stored in the SUNContext object) may be
configured through environment variables without any changes to user code. The available environment variables are:

SUNLOGGER_ERROR_FILENAME
SUNLOGGER_WARNING_FILENAME
SUNLOGGER_INFO_FILENAME
SUNLOGGER_DEBUG_FILENAME

These environment variables may be set to a filename string. There are two special filenames: stdout and stderr.
These two filenames will result in output going to the standard output file and standard error file. The different variables
may all be set to the same file, or to distinct files, or some combination there of. To disable output for one of the streams,
then do not set the environment variable, or set it to an empty string.

52 Chapter 4. Getting Started



User Documentation for ARKODE, v6.2.1

If SUNDIALS_LOGGING_LEVEL was set at build-time to a level lower than the corresponding environment variable, then
setting the environment variable will do nothing. For example, if the logging level is set to 2 (errors and warnings),
setting SUNLOGGER_INFO_FILENAME will do nothing.

Warning

A non-default logger should be created and attached to the context object prior to any other SUNDIALS calls in
order to capture all log events.

Error or warning logs are a single line output with an error or warning message

[level] [rank] [scope] [1label] message describing the error or warning

Informational or debugging logs are either a single line output with a comma-separated list of key-value pairs of the
form

[level] [rank] [scope] [label] keyl = value, key2 = value

or multiline output with one value per line for keys corresponding to a vector or array e.g.,

[level] [rank] [scope] [1label] y(:) =
y[0]
y[1]

In the example log outputs above, the values in brackets have the following meaning:
* level is the log level of the message and will be ERROR, WARNING, INFO, or DEBUG

e rank is the MPI rank the message was written from (0 by default or if SUNDIALS was built without MPI
enabled)

* scope is the message scope i.e., the name of the function from which the message was written

e label provides additional context or information about the logging output e.g., begin-step,
end-linear-solve, etc.

Note

When extra debugging output is enabled, the output will include vector values (so long as the N_Vector used
supports printing). Depending on the problem size, this may result in very large logging files.

4.4.2 Logger API

The central piece of the Logger API is the SUNLogger type:

type SUNLogger
An opaque pointer containing logging information.

When SUNDIALS is built with logging enabled, a default logging object is stored in the SUNContext object and can
be accessed with a call to SUNContext_GetLogger().

The enumerated type SUNLogLevel is used by some of the logging functions to identify the output level or file.

4.4. Status and Error Logging 53



User Documentation for ARKODE, v6.2.1

enum SUNLogLevel
The SUNDIALS logging level

enumerator SUN_LOGLEVEL_ALL

Represents all output levels

enumerator SUN_LOGLEVEL_NONE

Represents none of the output levels

enumerator SUN_LOGLEVEL_ERROR

Represents error-level logging messages

enumerator SUN_LOGLEVEL_WARNING

Represents warning-level logging messages

enumerator SUN_LOGLEVEL_INFO

Represents info-level logging messages

enumerator SUN_LOGLEVEL_DEBUG

Represents deubg-level logging messages
The SUNLogger class provides the following methods.

int SUNLogger_Create (SUNComm comm, int output_rank, SUNLogger *logger)
Creates a new SUNLogger object.

Arguments:
¢ comm — the MPI communicator to use, if MPI is enabled, otherwise can be SUN_COMM_NULL.
* output_rank — the MPI rank used for output (can be -1 to print to all ranks).

* logger —[in,out] On input this is a pointer to a SUNLogger, on output it will point to anew SUNLogger
instance.

Returns:
¢ Returns zero if successful, or non-zero if an error occurred.
int SUNLogger_CreateFromEnv (SUNComm comm, SUNLogger *logger)

Creates a new SUNLogger object and opens the output streams/files from the environment variables:

SUNLOGGER_ERROR_FILENAME
SUNLOGGER_WARNING_FILENAME
SUNLOGGER_INFO_FILENAME
SUNLOGGER_DEBUG_FILENAME

Arguments:
e comm — the MPI communicator to use, if MPI is enabled, otherwise can be SUN_COMM_NULL.

* logger —[in,out] On input this is a pointer to a SUNLogger, on output it will point to a new SUNLogger
instance.

Returns:

¢ Returns zero if successful, or non-zero if an error occurred.

54 Chapter 4. Getting Started



User Documentation for ARKODE, v6.2.1

int SUNLogger_SetErrorFilename (SUNLogger logger, const char *error_filename)

Sets the filename for error output.
Arguments:

* logger —a SUNLogger object.

* error_filename — the name of the file to use for error output.
Returns:

¢ Returns zero if successful, or non-zero if an error occurred.

int SUNLogger_SetWarningFilename (SUNLogger logger, const char *warning_filename)
Sets the filename for warning output.

Arguments:

* logger — a SUNLogger object.

e warning_filename — the name of the file to use for warning output.
Returns:

e Returns zero if successful, or non-zero if an error occurred.

int SUNLogger_SetInfoFilename (SUNLogger logger, const char *info_filename)

Sets the filename for info output.
Arguments:

* logger —a SUNLogger object.

* info_filename — the name of the file to use for info output.
Returns:

¢ Returns zero if successful, or non-zero if an error occurred.

int SUNLogger_SetDebugFilename (SUNLogger logger, const char *debug_filename)
Sets the filename for debug output.

Arguments:

* logger —a SUNLogger object.

¢ debug_filename — the name of the file to use for debug output.
Returns:

¢ Returns zero if successful, or non-zero if an error occurred.

int SUNLogger_QueueMsg (SUNLogger logger, SUNLogLevel 1v], const char *scope, const char *1abel, const char
*msg_txt, ...)

Queues a message to the output log level.
Arguments:
* logger —a SUNLogger object.
e 1v1 - the message log level (i.e. error, warning, info, debug).
* scope — the message scope (e.g. the function name).
¢ label - the message label.

e msg_txt — the message text itself.

4.4. Status and Error Logging 55



User Documentation for ARKODE, v6.2.1

e ... —the format string arguments
Returns:

e Returns zero if successful, or non-zero if an error occurred.

Warning

When compiling for ANSI C / C89 / C90 (and without compiler extensions), it is dangerous to pass any user
input to this function because it falls back to using sprintf with a fixed buffer size.

It is highly recommended to compile with C99 or newer if your compiler does not support snprintf through
extensions.

int SUNLogger_Flush(SUNLogger logger, SUNLogLevel 1v1)
Flush the message queue(s).

Arguments:

* logger — a SUNLogger object.

* 1vl — the message log level (i.e. error, warning, info, debug or all).
Returns:

¢ Returns zero if successful, or non-zero if an error occurred.

int SUNLogger_GetOutputRank (SUNLogger logger, int *output_rank)
Get the output MPI rank for the logger.

Arguments:
* logger —a SUNLogger object.

* output_rank — [in,out] On input this is a pointer to an int, on output it points to the int holding the
output rank.

Returns:
e Returns zero if successful, or non-zero if an error occurred.

int SUNLogger_Destroy (SUNLogger *logger)
Free the memory for the SUNLogger object.

Arguments:
* logger — a pointer to the SUNLogger object.
Returns:

¢ Returns zero if successful, or non-zero if an error occur.

56 Chapter 4. Getting Started



User Documentation for ARKODE, v6.2.1

4.4.3 Example Usage

As noted above, enabling logging must be done when configuring SUNDIALS by setting the CMake option SUN-
DIALS_LOGGING_LEVEL to the desired logging level. When running a program with SUNDIALS logging enabled,
a default logger is created and attached to the SUNContext instance at creation. Environment variables or run-time
functions can be used to determine where the logging output is written. For example, consider the CVODE Roberts
example, where we can direct the informational output to the file sun.log as follows

SUNDIALS_INFO_FILENAME=sun.log ./examples/cvode/serial/cvRoberts_dns

Alternatively, the following examples demonstrate how to use the logging interface via the C API:

examples/arkode/CXX_serial/ark_analytic_sys.cpp
examples/cvode/serial/cvAdvDiff_bnd.c
examples/cvode/parallel/cvAdvDiff_diag_p.c
examples/kinsol/CXX_parallel/kin_em_p.cpp
examples/kinsol/CUDA_mpi/kin_em_mpicuda.cpp

To assist with extracting informational logging data from output files the tools directory contains a Python module,
suntools, that provides utilities for parsing log files. Some example scripts using the suntools module are included
in the tools directory. For example, we can plot the step size history from the CVODE Roberts problem with

./log_example.py sun.log

4.5 Performance Profiling

Added in version 6.0.0.

SUNDIALS includes a lightweight performance profiling layer that can be enabled at compile-time. Optionally, this
profiling layer can leverage Caliper [ 18] for more advanced instrumentation and profiling. By default, only SUNDIALS
library code is profiled. However, a public profiling API can be utilized to leverage the SUNDIALS profiler to time
user code regions as well (see §4.5.2).

4.5.1 Enabling Profiling

To enable profiling, SUNDIALS must be built with the CMake option SUNDIALS_BUILD_WITH_PROFILING set to
ON. To utilize Caliper support, the CMake option ENABLE_CALIPER must also be set to ON. More details in regards to
configuring SUNDIALS with CMake can be found in §15.

When SUNDIALS is built with profiling enabled and without Caliper, then the environment variable SUNPROFILER_-
PRINT can be utilized to enable/disable the printing of profiler information. Setting SUNPROFILER_PRINT=1 will cause
the profiling information to be printed to stdout when the SUNDIALS simulation context is freed. Setting SUNPRO-
FILER_PRINT=0 will result in no profiling information being printed unless the SUNProfiler_Print () function is
called explicitly. By default, SUNPROFILER_PRINT is assumed to be 8. SUNPROFILER_PRINT can also be set to a file
path where the output should be printed.

If Caliper is enabled, then users should refer to the Caliper documentation for information on getting profiler output.
In most cases, this involves setting the CALI_CONFIG environment variable.

Note

The SUNDIALS profiler requires POSIX timers or the Windows profileapi.h timers.

4.5. Performance Profiling 57


https://software.llnl.gov/Caliper/

User Documentation for ARKODE, v6.2.1

Warning

While the SUNDIALS profiling scheme is relatively lightweight, enabling profiling can still negatively impact
performance. As such, it is recommended that profiling is enabled judiciously.

4.5.2 Profiler API

The primary way of interacting with the SUNDIALS profiler is through the following macros:

SUNDIALS_MARK_FUNCTION_BEGIN(profobj)
SUNDIALS_MARK_FUNCTION_END (profobj)
SUNDIALS_WRAP_STATEMENT (profobj, name, stmt)
SUNDIALS_MARK_BEGIN(profobj, name)
SUNDIALS_MARK_END (profobj, name)

Additionally, in C++ applications, the follow macro is available:

SUNDIALS_CXX_MARK_FUNCTION (profobj)

These macros can be used to time specific functions or code regions. When using the *_BEGIN macros, it is important
that a matching *_END macro is placed at all exit points for the scope/function. The SUNDIALS_CXX_MARK_FUNCTION
macro only needs to be placed at the beginning of a function, and leverages RAII to implicitly end the region.

The profobj argument to the macro should be a SUNProfiler object, i.e.

type SUNProfiler

An opaque pointer containing profiling information.

When SUNDIALS is built with profiling, a default profiling object is stored in the SUNContext object and can be
accessed with a call to SUNContext_GetProfiler().

The name argument should be a unique string indicating the name of the region/function. It is important that the name
given to the *_BEGIN macros matches the name given to the *_END macros.

In addition to the macros, the following methods of the SUNProfiler class are available.

int SUNProfiler_Create(SUNComm comm, const char *title, SUNProfiler *p)
Creates a new SUNProfiler object.

Arguments:
¢ comm — the MPI communicator to use, if MPI is enabled, otherwise can be SUN_COMM_NULL.
e title — atitle or description of the profiler

* p - [in,out] On input this is a pointer to a SUNProfiler, on output it will point to a new SUNProfiler
instance

Returns:
¢ Returns zero if successful, or non-zero if an error occurred

int SUNProfiler_Free (SUNProfiler *p)
Frees a SUNProfiler object.

Arguments:
* p — [in,out] On input this is a pointer to a SUNProfiler, on output it will be NULL

Returns:

58 Chapter 4. Getting Started



User Documentation for ARKODE, v6.2.1

¢ Returns zero if successful, or non-zero if an error occurred

int SUNProfiler_Begin(SUNProfiler p, const char *name)

Starts timing the region indicated by the name.
Arguments:
* p—a SUNProfiler object
* name — a name for the profiling region
Returns:
¢ Returns zero if successful, or non-zero if an error occurred

int SUNProfiler_End (SUNProfiler p, const char *name)
Ends the timing of a region indicated by the name.

Arguments:
* p—a SUNProfiler object
* name — a name for the profiling region
Returns:
¢ Returns zero if successful, or non-zero if an error occurred

int SUNProfiler_GetElapsedTime (SUNProfiler p, const char *name, double *time)

Get the elapsed time for the timer “name” in seconds.
Arguments:

* p—a SUNProfiler object

* name — the name for the profiling region of interest

* time — upon return, the elapsed time for the timer
Returns:

e Returns zero if successful, or non-zero if an error occurred

int SUNProfiler_GetTimerResolution(SUNProfiler p, double *resolution)

Get the timer resolution in seconds.
Arguments:

* p—a SUNProfiler object

e resolution — upon return, the resolution for the timer
Returns:

¢ Returns zero if successful, or non-zero if an error occurred

int SUNProfiler_Print (SUNProfiler p, FILE *fp)

Prints out a profiling summary. When constructed with an MPI comm the summary will include the average and
maximum time per rank (in seconds) spent in each marked up region.

Arguments:
* p—a SUNProfiler object
 fp — the file handler to print to

Returns:

4.5. Performance Profiling 59



User Documentation for ARKODE, v6.2.1

¢ Returns zero if successful, or non-zero if an error occurred

int SUNProfiler_Reset (SUNProfiler p)

Resets the region timings and counters to zero.
Arguments:

* p—a SUNProfiler object
Returns:

¢ Returns zero if successful, or non-zero if an error occurred

4.5.3 Example Usage

The following is an excerpt from the CVODE example code examples/cvode/serial/cvAdvDiff bnd.c. It is
applicable to any of the SUNDIALS solver packages.

SUNContext ctx;
SUNProfiler profobj;

/* Create the SUNDIALS context */
retval = SUNContext_Create(SUN_COMM_NULL, &ctx);

/* Get a reference to the profiler */
retval = SUNContext_GetProfiler(ctx, &profobj);

JE Ly

SUNDIALS_MARK_BEGIN(profobj, "Integration loop");

umax = N_VMaxNorm(u);

PrintHeader(reltol, abstol, umax);

for(iout=1, tout=T1l; iout <= NOUT; iout++, tout += DTOUT) {
retval = CVode(cvode_mem, tout, u, &t, CV_NORMAL);
umax = N_VMaxNorm(u) ;
retval = CVodeGetNumSteps(cvode_mem, &nst);
PrintOutput(t, umax, nst);

}
SUNDIALS_MARK_END(profobj, "Integration loop");
PrintFinalStats(cvode_mem); /* Print some final statistics &

4.5.4 Other Considerations

If many regions are being timed, it may be necessary to increase the maximum number of profiler entries (the default
is 2560). This can be done by setting the environment variable SUNPROFILER_MAX_ENTRIES.

60 Chapter 4. Getting Started



User Documentation for ARKODE, v6.2.1

4.6 Getting Version Information

SUNDIALS provides additional utilities to all packages, that may be used to retrieve SUNDIALS version information
at runtime.

int SUNDIALSGetVersion(char *version, int len)
This routine fills a string with SUNDIALS version information.

Arguments:
* version — character array to hold the SUNDIALS version information.
* len — allocated length of the version character array.
Return value:
* 0 if successful
» -1 if the input string is too short to store the SUNDIALS version

Notes:
An array of 25 characters should be sufficient to hold the version information.

int SUNDIALSGetVersionNumber (int *major, int *minor, int *patch, char *label, int len)

This routine sets integers for the SUNDIALS major, minor, and patch release numbers and fills a string with the
release label if applicable.

Arguments:
* major — SUNDIALS release major version number.
» minor — SUNDIALS release minor version number.
e patch — SUNDIALS release patch version number.
* label — string to hold the SUNDIALS release label.
¢ len — allocated length of the label character array.
Return value:
* 0 if successful
-1 if the input string is too short to store the SUNDIALS label

Notes:
An array of 10 characters should be sufficient to hold the label information. If a label is not used in the
release version, no information is copied to label.

4.7 Fortran Interface

SUNDIALS provides modern, Fortran 2003 based, interfaces as Fortran modules to most of the C API including:
e The SUNDIALS core types, utilities, and data structures via the fsundials_core_mod module.
* All of the time-stepping modules in ARKODE:

— The farkode_arkstep_mod, farkode_erkstep_mod, farkode_mristep_mod, and farkode_sprk-
step_mod modules provide interfaces to the ARKStep, ERKStep, MRIStep, and SPRKStep integrators
respectively.

— The farkode_mod module interfaces to the components of ARKODE which are shared by the time-
stepping modules.

4.6. Getting Version Information 61



User Documentation for ARKODE, v6.2.1

* CVODE via the fcvode_mod module.

* CVODES via the fcvodes_mod module.
¢ IDA via the fida_mod module.

* IDAS via the fidas_mod module.

e KINSOL via the fkinsol_mod module.

Additionally, all of the SUNDIALS base classes (N_Vector, SUNMatrix, SUNLinearSolver, and SUNNonlinear-
Solver) include Fortran interface modules. A complete list of class implementations with Fortran 2003 interface
modules is given in Table 4.1.

An interface module can be accessed with the use statement, e.g.

use fsundials_core_mod ! this is needed to access core SUNDIALS types, utilities, and data structures
use fcvode_mod ! this is needed to access CVODE functions and types
use fnvector_openmp_mod ! this is needed to access the OpenMP implementation of the N_Vector class

and by linking to the Fortran 2003 library in addition to the C library, e.g. 1ibsundials_fcore_mod.<so|a>, lib-
sundials_core.<so|a>, libsundials_fnvecpenmp_mod.<so|a>, libsundials_nvecopenmp.<so|a>, 1lib-
sundials_fcvode_mod.<so|a> and libsundials_cvode.<so|a>. The use statements mirror the #include
statements needed when using the C APL

The Fortran 2003 interfaces leverage the iso_c_binding module and the bind(C) attribute to closely follow the
SUNDIALS C API (modulo language differences). The SUNDIALS classes, e.g. N_Vector, are interfaced as Fortran
derived types, and function signatures are matched but with an F prepending the name, e.g. FN_VConst instead of
N_VConst () or FCVodeCreate instead of CVodeCreate. Constants are named exactly as they are in the C APL
Accordingly, using SUNDIALS via the Fortran 2003 interfaces looks just like using it in C. Some caveats stemming
from the language differences are discussed in §4.7.2. A discussion on the topic of equivalent data types in C and
Fortran 2003 is presented in §4.7.1.

Further information on the Fortran 2003 interfaces specific to the N_Vector, SUNMatrix, SUNLinearSolver, and
SUNNonlinearSolver classes is given alongside the C documentation. For details on where the Fortran 2003 module
(.mod) files and libraries are installed see §15.

The Fortran 2003 interface modules were generated with SWIG Fortran [61], a fork of SWIG. Users who are interested
in the SWIG code used in the generation process should contact the SUNDIALS development team.

Table 4.1: List of SUNDIALS Fortran 2003 interface modules

Class/Module Fortran 2003 Module Name
SUNDIALS core fsundials_core_mode
ARKODE farkode_mod

ARKODE::ARKSTEP
ARKODE::ERKSTEP
ARKODE::MRISTEP
ARKODE::SPRKSTEP

farkode_arkstep_mod
farkode_erkstep_mod
farkode_mristep_mod
farkode_sprkstep_mod

CVODE fcvode_mod
CVODES fcvodes_mod
IDA fida_mod
IDAS fidas_mod
KINSOL fkinsol_mod

NVECTOR_SERIAL
NVECTOR_OPENMP
NVECTOR_PTHREADS
NVECTOR_PARALLEL

fnvector_serial_mod
fnvector_openmp_mod
fnvector_pthreads_mod
fnvector_parallel_mod

continues on next page

62

Chapter 4. Getting Started



User Documentation for ARKODE, v6.2.1

Table 4.1 — continued from previous page

Class/Module

Fortran 2003 Module Name

NVECTOR_PARHYP
NVECTOR_PETSC
NVECTOR_CUDA
NVECTOR_RAJA
NVECTOR_SYCL
NVECTOR_MANVECTOR
NVECTOR_MPIMANVECTOR
NVECTOR_MPIPLUSX
SUNMATRIX_BAND
SUNMATRIX_DENSE
SUNMATRIX_MAGMADENSE
SUNMATRIX_ONEMKLDENSE
SUNMATRIX_SPARSE
SUNLINSOL_BAND
SUNLINSOL_DENSE
SUNLINSOL_LAPACKBAND
SUNLINSOL_LAPACKDENSE
SUNLINSOL_MAGMADENSE
SUNLINSOL_ONEMKLDENSE
SUNLINSOL_KLU
SUNLINSOL_SLUMT
SUNLINSOL_SLUDIST
SUNLINSOL_SPGMR
SUNLINSOL_SPFGMR
SUNLINSOL_SPBCGS
SUNLINSOL_SPTFQMR
SUNLINSOL_PCG
SUNNONLINSOL_NEWTON
SUNNONLINSOL_FIXEDPOINT
SUNNONLINSOL_PETSCSNES

Not interfaced

Not interfaced

Not interfaced

Not interfaced

Not interfaced
fnvector_manyvector_mod
fnvector_mpimanyvector_mod
fnvector_mpiplusx_mod
fsunmatrix_band_mod
fsunmatrix_dense_mod

Not interfaced

Not interfaced
fsunmatrix_sparse_mod
fsunlinsol_band_mod
fsunlinsol_dense_mod

Not interfaced

Not interfaced

Not interfaced

Not interfaced
fsunlinsol_klu_mod

Not interfaced

Not interfaced
fsunlinsol_spgmr_mod
fsunlinsol_spfgmr_mod
fsunlinsol_spbcgs_mod
fsunlinsol_sptfgmr_mod
fsunlinsol_pcg_mof
fsunnonlinsol_newton_mod
fsunnonlinsol_fixedpoint_mod
Not interfaced

4.7.1 Data Types

Generally, the Fortran 2003 type that is equivalent to the C type is what one would expect. Primitive types map to
the iso_c_binding type equivalent. SUNDIALS classes map to a Fortran derived type. However, the handling of
pointer types is not always clear as they can depend on the parameter direction. Table 4.2 presents a summary of the
type equivalencies with the parameter direction in mind.

Warning

Currently, the Fortran 2003 interfaces are only compatible with SUNDIALS builds where the sunrealtype is
double-precision.

Changed in version 7.1.0: The Fortran interfaces can now be built with 32-bit sunindextype in addition to 64-bit
sunindextype.

4.7. Fortran Interface 63



User Documentation for ARKODE, v6.2.1

Table 4.2: C/Fortran-2003 Equivalent Types

C Type Parameter Direction Fortran 2003 type

SUNComm in, inout, out, return integer(c_int)

SUNErrCode in, inout, out, return integer(c_int)

double in, inout, out, return real (c_double)

int in, inout, out, return integer(c_int)

long in, inout, out, return integer(c_long)

sunbooleantype in, inout, out, return integer(c_int)

sunrealtype in, inout, out, return real (c_double)

sunindextype in, inout, out, return integer(c_long)

double* in, inout, out real (c_double), dimension(*)
double* return real (c_double), pointer, dimension(:)
int* in, inout, out real(c_int), dimension(*)

int* return real(c_int), pointer, dimension(:)
long* in, inout, out real(c_long), dimension(¥*)

long* return real(c_long), pointer, dimension(:)
sunrealtype® in, inout, out real (c_double), dimension(*)
sunrealtype*® return real (c_double), pointer, dimension(:)
sunindextype® in, inout, out real(c_long), dimension(*)
sunindextype® return real(c_long), pointer, dimension(:)
sunrealtype[] in, inout, out real (c_double), dimension(*)
sunindextypel[] in, inout, out integer(c_long), dimension(*)
N_Vector in, inout, out type(N_Vector)

N_Vector return type(N_Vector), pointer

SUNMatrix in, inout, out type(SUNMatrix)

SUNMatrix return type(SUNMatrix), pointer
SUNLinearSolver in, inout, out type(SUNLinearSolver)
SUNLinearSolver return type(SUNLinearSolver), pointer
SUNNonlinearSolver in, inout, out type(SUNNonlinearSolver)
SUNNonlinearSolver return type(SUNNonlinearSolver), pointer
FILE* in, inout, out, return type(c_ptr)

void* in, inout, out, return type(c_ptr)

e in, inout, out, return type(c_ptr)

1SS in, inout, out, return type(c_ptr)

T in, inout, out, return type(c_ptr)

4.7.2 Notable Fortran/C usage differences

While the Fortran 2003 interface to SUNDIALS closely follows the C API, some differences are inevitable due to the
differences between Fortran and C. In this section, we note the most critical differences. Additionally, §4.7.1 discusses
equivalencies of data types in the two languages.

64 Chapter 4. Getting Started



User Documentation for ARKODE, v6.2.1

4.7.2.1 Creating generic SUNDIALS objects

In the C API a SUNDIALS class, such as an N_Vector, is actually a pointer to an underlying C struct. However,
in the Fortran 2003 interface, the derived type is bound to the C struct, not the pointer to the struct. For example,
type(N_Vector) is bound to the C struct _generic_N_Vector not the N_Vector type. The consequence of this is
that creating and declaring SUNDIALS objects in Fortran is nuanced. This is illustrated in the code snippets below:

C code:

N_Vector x;
X = N_VNew_Serial (N, sunctx);

Fortran code:

type(N_Vector), pointer :: x
X => FN_VNew_Serial (N, sunctx)

Note that in the Fortran declaration, the vector is a type(N_Vector), pointer, and that the pointer assignment
operator is then used.

4.7.2.2 Arrays and pointers

Unlike in the C API, in the Fortran 2003 interface, arrays and pointers are treated differently when they are return values
versus arguments to a function. Additionally, pointers which are meant to be out parameters, not arrays, in the C API
must still be declared as a rank-1 array in Fortran. The reason for this is partially due to the Fortran 2003 standard for
C bindings, and partially due to the tool used to generate the interfaces. Regardless, the code snippets below illustrate
the differences.

C code:

N_Vector x;
sunrealtype* xdata;
long int leniw, lenrw;

/* create a new serial vector */
x = N_VNew_Serial (N, sunctx);

/% capturing a returned array/pointer */
xdata = N_VGetArrayPointer(x)

/% passing array/pointer to a function */
N_VSetArrayPointer(xdata, Xx)

/% pointers that are out-parameters */
N_VSpace(x, &leniw, &lenrw);

Fortran code:

type(N_Vector), pointer :: x

real(c_double), pointer :: xdataptr(:)

real (c_double) :: xdata(N)
integer(c_long) :: leniw(1l), lenrw(l)

! create a new serial vector
(continues on next page)

4.7. Fortran Interface 65



User Documentation for ARKODE, v6.2.1

(continued from previous page)

x => FN_VNew_Serial(x, sunctx)

! capturing a returned array/pointer
xdataptr => FN_VGetArrayPointer(x)

! passing array/pointer to a function
call FN_VSetArrayPointer(xdata, x)

! pointers that are out-parameters
call FN_VSpace(x, leniw, lenrw)

4.7.2.3 Passing procedure pointers and user data

Since functions/subroutines passed to SUNDIALS will be called from within C code, the Fortran procedure must
have the attribute bind (C). Additionally, when providing them as arguments to a Fortran 2003 interface routine, it is
required to convert a procedure’s Fortran address to C with the Fortran intrinsic c_funloc.

Typically when passing user data to a SUNDIALS function, a user may simply cast some custom data structure as a
void*. When using the Fortran 2003 interfaces, the same thing can be achieved. Note, the custom data structure does
not have to be bind (C) since it is never accessed on the C side.

C code:

MyUserData *udata;
void *cvode_mem;

ierr = CVodeSetUserData(cvode_mem, udata);

Fortran code:

type(MyUserData) :: udata
type(c_ptr) :: arkode_mem

ierr = FARKStepSetUserData(arkode_mem, c_loc(udata))

On the other hand, Fortran users may instead choose to store problem-specific data, e.g. problem parameters, within
modules, and thus do not need the SUNDIALS-provided user_data pointers to pass such data back to user-supplied
functions. These users should supply the c_null_ptr input for user_data arguments to the relevant SUNDIALS
functions.

4.7.2.4 Passing NULL to optional parameters

In the SUNDIALS C API some functions have optional parameters that a caller can pass as NULL. If the optional
parameter is of a type that is equivalent to a Fortran type(c_ptr) (see §4.7.1), then a Fortran user can pass the
intrinsic c_null_ptr. However, if the optional parameter is of a type that is not equivalent to type(c_ptr), then a
caller must provide a Fortran pointer that is dissociated. This is demonstrated in the code example below.

C code:

SUNLinearSolver LS;
N_Vector x, b;

(continues on next page)

66 Chapter 4. Getting Started



User Documentation for ARKODE, v6.2.1

(continued from previous page)

/% SUNLinSolSolve expects a SUNMatrix or NULL as the second parameter. */
ierr = SUNLinSolSolve(LS, NULL, x, b);

Fortran code:

type(SUNLinearSolver), pointer :: LS
type(SUNMatrix), pointer it A
type(N_Vector), pointer i x, b

! Disassociate A
A = nullQ

! SUNLinSolSolve expects a type(SUNMatrix), pointer as the second parameter.
! Therefore, we cannot pass a c_null ptr, rather we pass a disassociated A.
ierr = FSUNLinSolSolve(LS, A, x, b)

4.7.2.5 Working with N_Vector arrays

Arrays of N_Vector objects are interfaced to Fortran 2003 as an opaque type(c_ptr). As such, it is not possible to
directly index an array of N_Vector objects returned by the N_Vector “VectorArray” operations, or packages with sen-
sitivity capabilities (CVODES and IDAS). Instead, SUNDIALS provides a utility function FN_VGetVecAtIndexVec-
torArray wrapping N_VGetVecAtIndexVectorArray (). The example below demonstrates accessing a vector in a
vector array.

C code:

N_Vector x;
N_Vector* vecs;

/* Create an array of N_Vectors */
vecs = N_VCloneVectorArray(count, Xx);

/% Fill each array with ones */
for (dint i = 0; i < count; ++i)
N_VConst(vecs[i], 1.0);

Fortran code:

type(N_Vector), pointer :: x, xi
type(c_ptr) 11 vecs

! Create an array of N_Vectors
vecs = FN_VCloneVectorArray(count, Xx)

! Fill each array with ones

do index = 0,count-1
xi => FN_VGetVecAtIndexVectorArray(vecs, index)
call FN_VConst(xi, 1.d0)

enddo

SUNDIALS also provides the functions N_VSetVecAtIndexVectorArray () and N_VNewVectorArray () for work-
ing with N_Vector arrays, that have corresponding Fortran interfaces FN_VSetVecAtIndexVectorArray and FN_-
VNewVectorArray, respectively. These functions are particularly useful for users of the Fortran interface to the NVEC-

4.7. Fortran Interface 67



User Documentation for ARKODE, v6.2.1

TOR_MANYVECTOR or NVECTOR_MPIMANYVECTOR when creating the subvector array. Both of these functions
along with N_VGetVecAtIndexVectorArray() (wrapped as FN_VGetVecAtIndexVectorArray) are further de-
scribed in §8.1.1.

4.7.2.6 Providing file pointers

There are a few functions in the SUNDIALS C API which take a FILE* argument. Since there is no portable way to
convert between a Fortran file descriptor and a C file pointer, SUNDIALS provides two utility functions for creating a
FILE* and destroying it. These functions are defined in the module fsundials_core_mod.

SUNErrCode SUNDIALSFileOpen(const char *filename, const char *mode, FILE **fp)

The function allocates a FILE* by calling the C function fopen with the provided filename and I/O mode.
Parameters

» filename - the path to the file, that should have Fortran type character (kind=C_CHAR,
len=*). There are two special filenames: stdout and stderr — these two filenames will
result in output going to the standard output file and standard error file, respectively.

* mode — the I/O mode to use for the file. This should have the Fortran type charac-
ter (kind=C_CHAR, len=*). The string begins with one of the following characters:

T to open a text file for reading

T+ to open a text file for reading/writing

w to truncate a text file to zero length or create it for writing

w+ to open a text file for reading/writing or create it if it does
not exist

a to open a text file for appending, see documentation of fopen for
your system/compiler

a+ to open a text file for reading/appending, see documentation for
fopen for your system/compiler

o fp — The FILE* that will be open when the function returns. This should be a type(c_ptr) in
the Fortran.

Returns
A SUNErrCode

Usage example:
type(c_ptr) :: fp

! Open up the file output.log for writing
ierr = FSUNDIALSFileOpen("output.log", "w+", £fp)

! The C function ARKStepPrintMem takes void* arkode_mem and FILE* fp as arguments
call FARKStepPrintMem(arkode_mem, fp)

! Close the file
ierr = FSUNDIALSFileClose(fp)

Changed in version 7.0.0: The function signature was updated to return a SUNErrCode and take a FILE** as
the last input parameter rather then return a FILE™.

68

Chapter 4. Getting Started



User Documentation for ARKODE, v6.2.1

SUNErrCode SUNDIALSFileClose (FILE **fp)
The function deallocates a C FILE* by calling the C function fclose with the provided pointer.
Parameters

» fp — the C FILE* that was previously obtained from fopen. This should have the Fortran
type type(c_ptr). Note that if either stdout or stderr were opened using SUNDIALS-
FileOpen()

Returns
A SUNErrCode

Changed in version 7.0.0: The function signature was updated to return a SUNErrCode and the fp parameter was
changed from FILE* to FILE**.

4.7.3 Important notes on portability

The SUNDIALS Fortran 2003 interface should be compatible with any compiler supporting the Fortran 2003 ISO
standard.

Upon compilation of SUNDIALS, Fortran module (.mod) files are generated for each Fortran 2003 interface. These
files are highly compiler specific, and thus it is almost always necessary to compile a consuming application with the
same compiler that was used to generate the modules.

4.7.4 Common Issues

In this subsection, we list some common issues users run into when using the Fortran interfaces.
Strange Segmentation Fault in User-Supplied Functions

One common issue we have seen trip up users (and even ourselves) has the symptom of segmentation fault in a user-
supplied function (such as the RHS) when trying to use one of the callback arguments. For example, in the following
RHS function, we will get a segfault on line 21:

integer(c_int) function ff(t, yvec, ydotvec, user_data) &
result(ierr) bind(C)

use, intrinsic :: iso_c_binding
use fsundials_nvector_mod
implicit none

real(c_double) :: t ! <===== Missing value attribute
type(N_Vector) :: yvec
type(N_Vector) :: ydotvec

type(c_ptr) :: user_data
real(c_double) :: e
real(c_double) :: u, v

real (c_double) :: tmpl, tmp2
real (c_double), pointer :: yarr(:)
real (c_double), pointer :: ydotarr(:)

I get N_Vector data arrays
yarr => FN_VGetArrayPointer(yvec)
ydotarr => FN_VGetArrayPointer(ydotvec) ! <===== SEGFAULTS HERE

(continues on next page)

4.7. Fortran Interface 69



22

23

24

25

26

27

User Documentation for ARKODE, v6.2.1

(continued from previous page)

! extract variables
u = yarr(l)
v = yarr(2)

I fill in the RHS function:

[0 0]*[(-1+ur2-r(t))/(2*w] + [ 0 ]
I [e -1] [(-2+vA2-s(t))/(2*V)] [sdot(t)/(2*vtrue(t))]
tmpl = (-ONE+u*u-r(t))/(TWO*u)

tmp2 = (-TWO+v*v-s(t))/(TWO*v)

ydotarr(1l) = ZERO

ydotarr(2) = e*tmpl - tmp2 + sdot(t)/(TWO*vtrue(t))

! return success
ierr = 0
return

end function

The subtle bug in the code causing the segfault is on line 8. It should read real (c_double), value :: tinstead
of real(c_double) :: t (notice the value attribute). Fundamental types that are passed by value in C need the
value attribute.

4.8 Features for GPU Accelerated Computing

In this section, we introduce the SUNDIALS GPU programming model and highlight SUNDIALS GPU features. The
model leverages the fact that all of the SUNDIALS packages interact with simulation data either through the shared
vector, matrix, and solver APIs or through user-supplied callback functions. Thus, under the model, the overall structure
of the user’s calling program, and the way users interact with the SUNDIALS packages is similar to using SUNDIALS
in CPU-only environments.

4.8.1 SUNDIALS GPU Programming Model

As described in [14], within the SUNDIALS GPU programming model, all control logic executes on the CPU, and
all simulation data resides wherever the vector or matrix object dictates as long as SUNDIALS is in control of the
program. That is, SUNDIALS will not migrate data (explicitly) from one memory space to another. Except in the most
advanced use cases, it is safe to assume that data is kept resident in the GPU-device memory space. The consequence
of this is that, when control is passed from the user’s calling program to SUNDIALS, simulation data in vector or
matrix objects must be up-to-date in the device memory space. Similarly, when control is passed from SUNDIALS to
the user’s calling program, the user should assume that any simulation data in vector and matrix objects are up-to-date
in the device memory space. To put it succinctly, it is the responsibility of the user’s calling program to manage data
coherency between the CPU and GPU-device memory spaces unless unified virtual memory (UVM), also known as
managed memory, is being utilized. Typically, the GPU-enabled SUNDIALS modules provide functions to copy data
from the host to the device and vice-versa as well as support for unmanaged memory or UVM. In practical terms, the
way SUNDIALS handles distinct host and device memory spaces means that users need to ensure that the user-supplied
functions, e.g. the right-hand side function, only operate on simulation data in the device memory space otherwise extra
memory transfers will be required and performance will suffer. The exception to this rule is if some form of hybrid
data partitioning (achievable with the NVECTOR_MANYVECTOR, see §8.17) is utilized.

SUNDIALS provides many native shared features and modules that are GPU-enabled. Currently, these include the
NVIDIA CUDA platform [5], AMD ROCm/HIP [2], and Intel oneAPI [3]. Table 4.3—Table 4.6 summarize the shared

70 Chapter 4. Getting Started



User Documentation for ARKODE, v6.2.1

SUNDIALS modules that are GPU-enabled, what GPU programming environments they support, and what class of
memory they support (unmanaged or UVM). Users may also supply their own GPU-enabled N_Vector, SUNMatrix,
SUNLinearSolver, or SUNNonlinearSolver implementation, and the capabilities will be leveraged since SUNDI-
ALS operates on data through these APIs.

In addition, SUNDIALS provides a memory management helper module (see §14) to support applications which im-
plement their own memory management or memory pooling.

Table 4.3: List of SUNDIALS GPU-enabled N_Vector Modules

Module CUDA ROCm/HIP oneAPI Unmanaged Memory UVM
NVECTOR_CUDA X X X
NVECTOR_HIP X X X X
NVECTOR_SYCL X3 X3 X X X
NVECTOR_RAJA X X X X X
NVECTOR_KOKKOS X X X X X
NVECTOR_OPENMPDEV X X2 X2 X

Table 4.4: List of SUNDIALS GPU-enabled SUNMatrix Modules

Module CUDA ROCn/HIP oneAPI Unmanaged Memory UVM
SUNMATRIX_CUSPARSE X X X
SUNMATRIX_ONEMKLDENSE X3 X3 X X X
SUNMATRIX_MAGMADENSE X X X X
SUNMATRIX_GINKGO X X X X
SUNMATRIX_KOKKOSDENSE X X X X

Table 4.5: List of SUNDIALS GPU-enabled SUNLinearSolver Mod-

ules
Module CUDA ROCm/HIP oneAPI Unmanaged Memory UVM
SUNLINSOL_CUSOLVERSP X X X
SUNLINSOL_ONEMKLDENSE X3 X3 X X X
SUNLINSOL_MAGMADENSE X X X
SUNLINSOL_GINKGO X X X X
SUNLINSOL_KOKKOSDENSE X X X X
SUNLINSOL_SPGMR X! X! X! X! X!
SUNLINSOL_SPFGMR X! X! X! X! X!
SUNLINSOL_SPTFOMR X! X! X! X! x!
SUNLINSOL_SPBCGS X! X! X! X! x!
SUNLINSOL_PCG X! X! X! X! X!

Table 4.6: List of SUNDIALS GPU-enabled SUNNonlinearSolver

Modules
Module CUDA ROCm/HIP oneAPI Unmanaged Memory UVM
SUNNONLINSOL_NEWTON X! X! X! X! X!
SUNNONLINSOL_FIXEDPOINT ~ X! X! X! X! X!

4.8. Features for GPU Accelerated Computing 71



User Documentation for ARKODE, v6.2.1

Notes regarding the above tables:

1.
2.
3.

This module inherits support from the NVECTOR module used
Support for ROCm/HIP and oneAPI are currently untested.
Support for CUDA and ROCm/HIP are currently untested.

In addition, note that implicit UVM (i.e. malloc returning UVM) is not accounted for.

4.8.2 Steps for Using GPU Accelerated SUNDIALS

For any SUNDIALS package, the generalized steps a user needs to take to use GPU accelerated SUNDIALS are:

1.

A

Utilize a GPU-enabled N_Vector implementation. Initial data can be loaded on the host, but must be in the
device memory space prior to handing control to SUNDIALS.

Utilize a GPU-enabled SUNLinearSolver linear solver (if applicable).
Utilize a GPU-enabled SUNMatrix implementation (if using a matrix-based linear solver).
Utilize a GPU-enabled SUNNonlinearSolver nonlinear solver (if applicable).

Write user-supplied functions so that they use data only in the device memory space (again, unless an atypical
data partitioning is used). A few examples of these functions are the right-hand side evaluation function, the
Jacobian evaluation function, or the preconditioner evaluation function. In the context of CUDA and the right-
hand side function, one way a user might ensure data is accessed on the device is, for example, calling a CUDA
kernel, which does all of the computation, from a CPU function which simply extracts the underlying device data
array from the N_Vector object that is passed from SUNDIALS to the user-supplied function.

Users should refer to the above tables for a complete list of GPU-enabled native SUNDIALS modules.

72

Chapter 4. Getting Started



Chapter 5

Using ARKODE

This chapter discusses usage of ARKODE for the solution of initial value problems (IVPs) in C, C++ and Fortran
applications. The chapter builds upon §4. Unlike other packages in SUNDIALS, ARKODE provides an infrastructure
for one-step methods. However, ARKODE’s individual time-stepping methods, including definition of the IVP itself,
are handled by time-stepping modules that sit on top of ARKODE. While most of the routines to use ARKODE generally
apply to all of its time-stepping modules, some of these apply to only a subset of these “steppers,” while others are
specific to a given stepper.

Thus, we organize this chapter as follows. We first discuss commonalities to each of ARKODE’s time-stepping mod-
ules. These commonalities include the locations and naming conventions for the library and header files, data types
in SUNDIALS, the layout of the user’s main program, and a variety of user-callable and user-supplied functions. For
these user-callable routines, we distinguish those that apply for only a subset of ARKODE'’s time-stepping modules.
We then describe shared utilities that are supported by some of ARKODE’s time stepping modules, including “relax-
ation” methods and preconitioners. Following our discussion of these commonalities, we separately discuss the usage
details that that are specific to each of ARKODE’s time stepping modules: ARKStep, ERKStep, ForcingStep, LSRKStep,
MRIStep, SplittingStep, and SPRK Step.

ARKODE also uses various input and output constants; these are defined as needed throughout this chapter, but for
convenience the full list is provided separately in §17.

The example programs for ARKODE are located in the source code examples/arkode folder. We note that these may
be helpful as templates for new codes. Users with applications written in Fortran should see the chapter §4.7, which
describes the Fortran interfaces for SUNDIALS, and we additionally include multiple Fortran example programs in the
ARKODE examples directory.

When solving problems with an implicit component, we note that not all SUNLINSOL, SUNMATRIX, and precon-
ditioning modules are compatible with all NVECTOR implementations. Details on compatibility are given in the
documentation for each SUNMATRIX (see §9) and each SUNLINSOL module (see §10). For example, NVECTOR_-
PARALLEL is not compatible with the dense, banded, or sparse SUNMATRIX types, or with the corresponding dense,
banded, or sparse SUNLINSOL modules. Please check §9 and §10 to verify compatibility between these modules. In
addition to that documentation, we note that the ARKBANDPRE preconditioning module is only compatible with the
NVECTOR_SERIAL, NVECTOR_OPENMP or NVECTOR_PTHREADS vector implementations, and the precon-
ditioner module ARKBBDPRE can only be used with NVECTOR_PARALLEL.

73



User Documentation for ARKODE, v6.2.1

5.1 Access to library and header files

At this point, it is assumed that the installation of ARKODE, following the procedure described in §15, has been
completed successfully. In the proceeding text, the directories 1ibdir and incdir are the installation library and in-
clude directories, respectively. For a default installation, these are instdir/1ib and instdir/include, respectively,
where instdir is the directory where SUNDIALS was installed.

Regardless of where the user’s application program resides, its associated compilation and load commands must make
reference to the appropriate locations for the library and header files required by ARKODE. ARKODE symbols are
found in libdir/libsundials_arkode.lib. Thus, in addition to linking to 1libdir/libsundials_core.lib,
ARKODE users need to link to the ARKODE library. Symbols for additional SUNDIALS modules, vectors and alge-
braic solvers, are found in

<libdir>/libsundials_nvec*.1lib
<libdir>/libsundials_sunmat®.1lib
<libdir>/libsundials_sunlinsol*.1lib
<libdir>/libsundials_sunnonlinsol*.1lib
<libdir>/libsundials_sunmem®.1lib

The file extension .1ib is typically .so for shared libraries and . a for static libraries.

The relevant header files for ARKODE are located in the subdirectories incdir/include/arkode. To use ARKODE
the application needs to include the header file(s) for the ARKODE time-stepper(s) of choice in addition to the SUN-
DIALS core header file.

#include <sundials/sundials_core.h> // Provides core SUNDIALS types

#include <arkode/arkode_arkstep.h> // ARKStep provides explicit, implicit, IMEX additive RK metho
#include <arkode/arkode_erkstep.h> // ERKStep provides explicit RK methods.

#include <arkode/arkode_forcingstep.h> // ForcingStep provides a forcing method.

#include <arkode/arkode_lsrkstep.h> // LSRKStep provides low-storage RK methods.

#include <arkode/arkode_mristep.h> // MRIStep provides multirate RK methods.

#include <arkode/arkode_splittingstep.h> // SplittingStep provides operator splitting methods.

#include <arkode/arkode_sprkstep.h> // SPRKStep provides symplectic partitioned RK methods.

Each of these define several types and various constants, include function prototypes, and include the shared arkode/
arkode.h and arkode/arkode_1ls.h header files. No other header files are required to be included, but there are
optional ones that can be included as necessary. Information on optional headers is given in the relevant documentation
section.

The calling program must also include an N_Vector implementation header file, of the form nvector/nvector_*.h.
See §8 for the appropriate name.

If the user includes a non-trivial implicit component to their ODE system in ARKStep, or if the slow time scale for
MRIStep should be treated implicitly, then each implicit stage will require a nonlinear solver for the resulting sys-
tem of algebraic equations — the default for this is a modified or inexact Newton iteration, depending on the user’s
choice of linear solver. If choosing to set which nonlinear solver module, or when interacting with a SUNNonIin-
earSolver module directly, the calling program must also include a SUNNonlinearSolver header file, of the form
sunnonlinsol/sunnonlinsol_***_.h where *** is the name of the nonlinear solver module (see §11 for more in-
formation).

If using a nonlinear solver that requires the solution of a linear system of the form Az = b (e.g., the default Newton
iteration), then a linear solver module header file will also be required. Similarly, if the ODE system in ARKStep
involves a non-identity mass matrix M = I, then each time step will require a linear solver for systems of the form
Max = b. In this case it will be necessary to include the header file for a SUNLinearSolver solver, which is of the
form sunlinsol/sunlinsol_***_.h (see §10 for more information).

74 Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

If the linear solver is matrix-based, the linear solver header will also include a header file of the from sunmatrix/

1

sunmatrix_*.h where * is the name of the matrix implementation compatible with the linear solver (see §9 for more
information).

Other headers may be needed, according to the choice of preconditioner, etc. For example, if preconditioning for an
iterative linear solver were performed using the ARKBBDPRE module, the header arkode/arkode_bbdpre.h is
needed to access the preconditioner initialization routines.

5.2 A skeleton of the user’s main program

The following is a skeleton of the user’s main program (or calling program) for the integration of an ODE IVP using
ARKODE. Most of the steps are independent of the NVECTOR, SUNMATRIX, SUNLINSOL and SUNNONLINSOL
implementations used. For the steps that are not, refer to §8, §9, §10, and §11 for the specific name of the function to
be called or macro to be referenced.

1. Initialize parallel or multi-threaded environment, if appropriate.

For example, call MPI_Init to initialize MPI if used, or set num_threads, the number of threads to use within
the threaded vector functions, if used.

2. Create the SUNDIALS simulation context object.
Call SUNContext_Create() to allocate the SUNContext object.
3. Set problem dimensions, etc.

This generally includes the problem size, N, and may include the local vector length Nlocal.

Note

The variables N and N1ocal should be of type sunindextype.

4. Set vector of initial values

To set the vector y® of initial values, use the appropriate functions defined by the particular NVECTOR imple-
mentation.

For native SUNDIALS vector implementations (except the CUDA and RAJA based ones), use a call of the form
y0® = N_VMake_***(..., ydata);
if the sunrealtype array ydata containing the initial values of y already exists. Otherwise, create a new vector

by making a call of the form

y® = N_VNew_***(...);

and then set its elements by accessing the underlying data where it is located with a call of the form
ydata = N_VGetArrayPointer_***(y0);
For details on each of SUNDIALS’ provided vector implementations, see the corresponding sections in §8 for
details.
5. Create ARKODE object

Call a stepper-specific constructor, arkode_mem = *StepCreate(...), to create the ARKODE memory
block. These routines return a void* pointer to this memory structure. See §5.7.1.1, §5.8.1.1, §5.11.2.1, or
§5.13.1.1 for details.

5.2. A skeleton of the user’s main program 75



User Documentation for ARKODE, v6.2.1

10.

11.

Specify integration tolerances

Call ARKodeSStolerances() or ARKodeSVtolerances() to specify either a scalar relative tolerance and
scalar absolute tolerance, or a scalar relative tolerance and a vector of absolute tolerances, respectively. Alter-
natively, call ARKodellFtolerances () to specify a function which sets directly the weights used in evaluating
WRMS vector norms. See §5.3.2 for details.

If a problem with non-identity mass matrix is used, and the solution units differ considerably from the equation
units, absolute tolerances for the equation residuals (nonlinear and linear) may be specified separately through
calls to ARKodeResStolerance (), ARKodeResVtolerance(), or ARKodeResFtolerance().

. Create matrix object

If a nonlinear solver requiring a linear solver will be used (e.g., a Newton iteration) and the linear solver will be
a matrix-based linear solver, then a template Jacobian matrix must be created by using the appropriate functions
defined by the particular SUNMATRIX implementation.

For the SUNDIALS-supplied SUNMATRIX implementations, the matrix object may be created using a call of
the form

SUNMatrix A = SUNBandMatrix(..., sunctx);

or similar for the other matrix modules (see §9 for further information).

Similarly, if the problem involves a non-identity mass matrix, and the mass-matrix linear systems will be solved
using a direct linear solver, then a template mass matrix must be created by using the appropriate functions
defined by the particular SUNMATRIX implementation.

. Create linear solver object

If a nonlinear solver requiring a linear solver will be used (e.g., a Newton iteration), or if the problem involves
a non-identity mass matrix, then the desired linear solver object(s) must be created by using the appropriate
functions defined by the particular SUNLINSOL implementation.

For any of the SUNDIALS-supplied SUNLINSOL implementations, the linear solver object may be created
using a call of the form

SUNLinearSolver LS = SUNLinSol_*(...);

where * can be replaced with “Dense”, “SPGMR”, or other options, as discussed in §10.
Set linear solver optional inputs

Call *Set* functions from the selected linear solver module to change optional inputs specific to that linear
solver. See the documentation for each SUNLINSOL module in §10 for details.

Attach linear solver module

If a linear solver was created above for implicit stage solves, initialize the ARKLS linear solver interface by
attaching the linear solver object (and Jacobian matrix object, if applicable) with the call (for details see §5.3.3):

ier = ARKodeSetLinearSolver(...);
Similarly, if the problem involves a non-identity mass matrix, initialize the ARKLS mass matrix linear solver

interface by attaching the mass linear solver object (and mass matrix object, if applicable) with the call (for details
see §5.3.3):

ier = ARKodeSetMassLinearSolver(...);

Create nonlinear solver object

76

Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

12.

13.

14.

15.

16.

17.

18.

19.

If the problem involves an implicit component, and if a non-default nonlinear solver object will be used for
implicit stage solves (see §5.3.5), then the desired nonlinear solver object must be created by using the appropriate
functions defined by the particular SUNNONLINSOL implementation (e.g., NLS = SUNNonlinSol_***(...
) ; where *** is the name of the nonlinear solver (see §11 for details).

For the SUNDIALS-supplied SUNNONLINSOL implementations, the nonlinear solver object may be created
using a call of the form

SUNNonlinearSolver NLS = SUNNonlinSol_*(...);

where * can be replaced with “Newton”, “FixedPoint”, or other options, as discussed in §11.
Attach nonlinear solver module

If a nonlinear solver object was created above, then it must be attached to ARKODE using the call (for details
see §5.3.5):

ier = ARKodeSetNonlinearSolver(...);

Set nonlinear solver optional inputs

Call the appropriate set functions for the selected nonlinear solver module to change optional inputs specific
to that nonlinear solver. These must be called after attaching the nonlinear solver to ARKODE, otherwise the
optional inputs will be overridden by ARKODE defaults. See §11 for more information on optional inputs.

Set optional inputs

Call ARKodeSet* functions to change any optional inputs that control the behavior of ARKODE from their
default values. See §5.3.8 for details.

Additionally, call *StepSet* routines to change any stepper-specific optional inputs from their default values.
See §5.7.1.8, §5.8.1.5, §5.11.2.7, or §5.13.1.4 for details.

Specify rootfinding problem

Optionally, call ARKodeRootInit () to initialize a rootfinding problem to be solved during the integration of the
ODE system. See §5.3.6 for general details, and §5.3.8 for relevant optional input calls.

Advance solution in time

For each point at which output is desired, call

ier = ARKodeEvolve(arkode_mem, tout, yout, &tret, itask);

Here, itask specifies the return mode. The vector yout (which can be the same as the vector y® above) will
contain y(teu ). See §5.3.7 for details.

Get optional outputs

Call ARKodeGet* functions to obtain optional output. See §5.3.10 for details.

Additionally, call *StepGet* routines to retrieve any stepper-specific optional outputs. See §5.7.1.10, §5.8.1.7,
§5.11.2.9, or §5.13.1.6 for details.

Deallocate memory for solution vector

Upon completion of the integration, deallocate memory for the vector y (or yout) by calling the destructor
function:

N_VDestroy(y);

Free solver memory

Call ARKodeFree () to free the memory allocated for the ARKODE module (and any nonlinear solver module).

5.2. A skeleton of the user’s main program 77



User Documentation for ARKODE, v6.2.1

20. Free linear solver and matrix memory

Call SUNLinSolFree() and (possibly) SUNMatDestroy () to free any memory allocated for the linear solver
and matrix objects created above.

21. Free nonlinear solver memory

If a user-supplied SUNNonlinearSolver was provided to ARKODE, then call SUNNonlinSolFree() to free
any memory allocated for the nonlinear solver object created above.

22. Free the SUNContext object
Call SUNContext_Free() to free the memory allocated for the SUNContext object.
23. Finalize MPI, if used

Call MPI_Finalize to terminate MPI.

5.3 ARKODE User-callable functions

This section describes the shared ARKODE functions that are called by the user to setup and then solve an IVP. Some
of these are required; however, starting with §5.3.8, the functions listed involve optional inputs/outputs or restarting,
and those paragraphs may be skipped for a casual use of ARKODE. In any case, refer to the preceding section, §5.2,
for the correct order of these calls.

On an error, each user-callable function returns a negative value (or NULL if the function returns a pointer) and sends
an error message to the error handler, which prints the message to stderr by default. However, the user can set a file
as error output or can provide their own error handler (see §4.3 for details).

We note that depending on the choice of time-stepping module, only a subset of ARKODE’s user-callable functions
will be applicable/supported. We thus categorize the functions below into five groups:

A. functions that apply for all time-stepping modules,

B. functions that apply for time-stepping modules that allow temporal adaptivity,

C. functions that apply for time-stepping modules that utilize implicit solvers (nonlinear or linear),
D. functions that apply for time-stepping modules that support non-identity mass matrices, and

E. functions that apply for time-stepping modules that support relaxation Runge—Kutta methods.

In the function descriptions below, we identify those that have any of the restrictions B-E above. Then in the introduction
for each of the stepper-specific documentation sections (§5.7.1, §5.8.1, §5.9.1, §5.10.1, §5.11.2, §5.12.2, and §5.13.1)
we clarify the categories of these functions that are supported.

5.3.1 ARKODE initialization and deallocation functions

For functions to create an ARKODE stepper instance see ARKStepCreate (), ERKStepCreate(), ForcingStepCre-
ate(), LSRKStepCreateSTS(), LSRKStepCreateSSP(), MRIStepCreate(), SplittingStepCreate(), or
SPRKStepCreate().

void ARKodeFree (void **arkode_mem)

This function frees the problem memory created a stepper constructor.
Parameters
» arkode_mem — pointer to the ARKODE stepper memory block.

Returns
none

78 Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

Added in version 6.1.0: This function replaces stepper specific versions in ARKStep, ERKStep, MRIStep, and
SPRKStep.

5.3.2 ARKODE tolerance specification functions

These functions specify the integration tolerances. One of them should be called before the first call to ARKodeE-
volve(); otherwise default values of reltol = le-4 and abstol = le-9 will be used, which may be entirely
incorrect for a specific problem.

The integration tolerances reltol and abstol define a vector of error weights, ewt. In the case of ARKodeSStoler-
ances (), this vector has components

ewt[i] = 1.0/(reltol*abs(y[i]) + abstol);

whereas in the case of ARKodeSVtolerances () the vector components are given by

ewt[i] = 1.0/(reltol*abs(y[i]) + abstol[i]);

This vector is used in all error and convergence tests, which use a weighted RMS norm on all error-like vectors v:

L 1/2
[vllwrms = <N > (v ewti)2> ;

i=1
where NN is the problem dimension.

Alternatively, the user may supply a custom function to supply the ewt vector, through a call to ARKodelWFtoler-
ances().

int ARKodeSStolerances (void *arkode_mem, sunrealtype reltol, sunrealtype abstol)
This function specifies scalar relative and absolute tolerances.

Parameters
» arkode_mem — pointer to the ARKODE memory block.
» reltol — scalar relative tolerance.
 abstol - scalar absolute tolerance.
Return values
» ARK_SUCCESS - the function exited successfully.
* ARK_MEM_NULL - arkode_mem was NULL.
* ARK_NO_MALLOC — arkode_mem was not allocated.
e ARK_ILL_INPUT - an argument had an illegal value (e.g. a negative tolerance).
Added in version 6.1.0.

int ARKodeSVtolerances (void *arkode_mem, sunrealtype reltol, N_Vector abstol)

This function specifies a scalar relative tolerance and a vector absolute tolerance (a potentially different absolute
tolerance for each vector component).

Parameters
» arkode_mem — pointer to the ARKODE memory block.
e reltol — scalar relative tolerance.

* abstol - vector containing the absolute tolerances for each solution component.

5.3. ARKODE User-callable functions 79



User Documentation for ARKODE, v6.2.1

Return values
* ARK_SUCCESS — the function exited successfully.
e ARK_MEM_NULL - arkode_mem was NULL.
e ARK_NO_MALLOC — arkode_mem was not allocated.
e ARK_ILL_INPUT - an argument had an illegal value (e.g. a negative tolerance).
Added in version 6.1.0.

int ARKodeWFtolerances (void *arkode_mem, ARKEwtFn efun)

This function specifies a user-supplied function efun to compute the error weight vector ewt.
Parameters
» arkode_mem — pointer to the ARKODE memory block.

» efun - the name of the function (of type ARKEwtFn()) that implements the error weight
vector computation.

Return values
» ARK_SUCCESS - the function exited successfully.
e ARK_MEM_NULL - arkode_mem was NULL.
* ARK_NO_MALLOC — arkode_mem was not allocated.
Added in version 6.1.0.

Moreover, for problems involving a non-identity mass matrix M = I, the units of the solution vector y may differ from
the units of the IVP, posed for the vector My. When this occurs, iterative solvers for the Newton linear systems and
the mass matrix linear systems may require a different set of tolerances. Since the relative tolerance is dimensionless,
but the absolute tolerance encodes a measure of what is “small” in the units of the respective quantity, a user may
optionally define absolute tolerances in the equation units. In this case, ARKODE defines a vector of residual weights,
rwt for measuring convergence of these iterative solvers. In the case of ARKodeResStolerance(), this vector has
components

rwt[i] = 1.0/(reltol*abs(My[i]) + rabstol);

whereas in the case of ARKodeResVtolerance () the vector components are given by

rwt[i] = 1.0/(reltol*abs(My[i]) + rabstol[i]);

This residual weight vector is used in all iterative solver convergence tests, which similarly use a weighted RMS norm
on all residual-like vectors v:

L X 1/2
llvllwrams = (N Z}(vi T’wti)2> ;

where [V is the problem dimension.

As with the error weight vector, the user may supply a custom function to supply the rwt vector, through a call to
ARKodeResFtolerance (). Further information on all three of these functions is provided below.

int ARKodeResStolerance (void *arkode_mem, sunrealtype rabstol)

This function specifies a scalar absolute residual tolerance.
Parameters

» arkode_mem — pointer to the ARKODE memory block.

80 Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

» rabstol — scalar absolute residual tolerance.
Return values
* ARK_SUCCESS — the function exited successfully.
e ARK_MEM_NULL - arkode_mem was NULL.
* ARK_NO_MALLOC — arkode_mem was not allocated.
e ARK_ILL_INPUT - an argument had an illegal value (e.g. a negative tolerance).
Added in version 6.1.0.

int ARKodeResVtolerance (void *arkode_mem, N_Vector rabstol)

This function specifies a vector of absolute residual tolerances.
Parameters
» arkode_mem — pointer to the ARKODE memory block.
» rabstol - vector containing the absolute residual tolerances for each solution component.
Return values
* ARK_SUCCESS — the function exited successfully.
* ARK_MEM_NULL - arkode_mem was NULL.
* ARK_NO_MALLOC — arkode_mem was not allocated.
* ARK_ILL_INPUT - an argument had an illegal value (e.g. a negative tolerance).
Added in version 6.1.0.

int ARKodeResFtolerance (void *arkode_mem, ARKRwtFn rfun)
This function specifies a user-supplied function rfun to compute the residual weight vector rwt.

Parameters
» arkode_mem — pointer to the ARKODE memory block.

» rfun - the name of the function (of type ARKRwtFn()) that implements the residual weight
vector computation.

Return values
» ARK_SUCCESS - the function exited successfully.
* ARK_MEM_NULL - arkode_mem was NULL.
* ARK_NO_MALLOC - arkode_mem was not allocated.
Added in version 6.1.0.

5.3.2.1 General advice on the choice of tolerances

For many users, the appropriate choices for tolerance values in reltol, abstol, and rabstol are a concern. The
following pieces of advice are relevant.

(1) The scalar relative tolerance reltol is to be set to control relative errors. So a value of 10~ means that errors
are controlled to .01%. We do not recommend using reltol larger than 10~3. On the other hand, reltol
should not be so small that it is comparable to the unit roundoff of the machine arithmetic (generally around
1015 for double-precision).

5.3. ARKODE User-callable functions 81



User Documentation for ARKODE, v6.2.1

(2) The absolute tolerances abstol (whether scalar or vector) need to be set to control absolute errors when any
components of the solution vector y may be so small that pure relative error control is meaningless. For example,
if y; starts at some nonzero value, but in time decays to zero, then pure relative error control on y; makes no sense
(and is overly costly) after y; is below some noise level. Then abstol (if scalar) or abstol[i] (if a vector) needs
to be set to that noise level. If the different components have different noise levels, then abstol should be a vector.
For example, see the example problem ark_robertson.c, and the discussion of it in the ARKODE Examples
Documentation [82]. In that problem, the three components vary between 0 and 1, and have different noise
levels; hence the atols vector therein. It is impossible to give any general advice on abstol values, because
the appropriate noise levels are completely problem-dependent. The user or modeler hopefully has some idea as
to what those noise levels are.

(3) The residual absolute tolerances rabstol (whether scalar or vector) follow a similar explanation as for abstol,
except that these should be set to the noise level of the equation components, i.e. the noise level of My. For
problems in which M = I, it is recommended that rabstol be left unset, which will default to the already-
supplied abstol values.

(4) Finally, it is important to pick all the tolerance values conservatively, because they control the error committed
on each individual step. The final (global) errors are an accumulation of those per-step errors, where that accu-
mulation factor is problem-dependent. A general rule of thumb is to reduce the tolerances by a factor of 10 from
the actual desired limits on errors. So if you want .01% relative accuracy (globally), a good choice for reltol is
1075, In any case, it is a good idea to do a few experiments with the tolerances to see how the computed solution
values vary as tolerances are reduced.

5.3.2.2 Advice on controlling nonphysical negative values

In many applications, some components in the true solution are always positive or non-negative, though at times very
small. In the numerical solution, however, small negative (nonphysical) values can then occur. In most cases, these
values are harmless, and simply need to be controlled, not eliminated, but in other cases any value that violates a
constraint may cause a simulation to halt. For both of these scenarios the following pieces of advice are relevant.

(1) The best way to control the size of unwanted negative computed values is with tighter absolute tolerances. Again
this requires some knowledge of the noise level of these components, which may or may not be different for
different components. Some experimentation may be needed.

(2) If output plots or tables are being generated, and it is important to avoid having negative numbers appear there
(for the sake of avoiding a long explanation of them, if nothing else), then eliminate them, but only in the context
of the output medium. Then the internal values carried by the solver are unaffected. Remember that a small
negative value in y returned by ARKODE, with magnitude comparable to abstol or less, is equivalent to zero
as far as the computation is concerned.

(3) The user’s right-hand side routines f¥ and f! should never change a negative value in the solution vector y to a
non-negative value in attempt to “fix” this problem, since this can lead to numerical instability. If the fZ or f’
routines cannot tolerate a zero or negative value (e.g. because there is a square root or log), then the offending
value should be changed to zero or a tiny positive number in a temporary variable (not in the input y vector) for
the purposes of computing £ (¢,y) or f1(t,v).

(4) Some of ARKODE'’s time stepping modules support component-wise constraints on solution components, y; <
0,vy; <0,y; > 0, ory; > 0, through the user-callable function ARKodeSetConstraints(). At each internal
time step, if any constraint is violated then ARKODE will attempt a smaller time step that should not violate this
constraint. This reduced step size is chosen such that the step size is the largest possible but where the solution
component satisfies the constraint.

(5) For time-stepping modules that support temporal adaptivity, positivity and non-negativity constraints on com-
ponents can also be enforced by use of the recoverable error return feature in the user-supplied right-hand side
function(s). When a recoverable error is encountered, ARKODE will retry the step with a smaller step size,
which typically alleviates the problem. However, since this reduced step size is chosen without knowledge of the

82 Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

solution constraint, it may be overly conservative. Thus this option involves some additional overhead cost, and
should only be exercised if the above recommendations are unsuccessful.

5.3.3 Linear solver interface functions

As previously explained, the Newton iterations used in solving implicit systems within ARKODE require the solution
of linear systems of the form

A (Z(m)) sm+) — _ (ZZ_(m))

(3
where

I
A= M —~J, J:%.
dy

ARKODE’s ARKLS linear solver interface supports all valid SUNLinearSolver modules for this task.

Matrix-based SUNLinearSolver modules utilize SUNMatrix objects to store the approximate Jacobian matrix .J, the
Newton matrix .4, the mass matrix M, and, when using direct solvers, the factorizations used throughout the solution
process.

Matrix-free SUNLinearSolver modules instead use iterative methods to solve the Newton systems of equations, and
only require the action of the matrix on a vector, Av. With most of these methods, preconditioning can be done on
the left only, on the right only, on both the left and the right, or not at all. The exceptions to this rule are SPFGMR
that supports right preconditioning only and PCG that performs symmetric preconditioning. For the specification of a
preconditioner, see the iterative linear solver portions of §5.3.8 and §5.4.

If preconditioning is done, user-supplied functions should be used to define left and right preconditioner matrices P;
and P (either of which could be the identity matrix), such that the product P; P, approximates the Newton matrix
A=M —~J.

To specify a generic linear solver for ARKODE to use for the Newton systems, after the call to *StepCreate but before
any calls to ARKodeEvolve (), the user’s program must create the appropriate SUNLinearSolver object and call the
function ARKodeSetLinearSolver(), as documented below. To create the SUNLinearSolver object, the user may
call one of the SUNDIALS-packaged SUNLinSol module constructor routines via a call of the form

SUNLinearSolver LS = SUNLinSol_*(...);

The current list of SUNDIALS-packaged SUNLinSol modules, and their constructor routines, may be found in chapter
§10. Alternately, a user-supplied SUNLinearSolver module may be created and used. Specific information on how
to create such user-provided modules may be found in §10.1.8.

Once this solver object has been constructed, the user should attach it to ARKODE via a call to ARKodeSetLinear-
Solver(). The first argument passed to this function is the ARKODE memory pointer returned by *StepCreate;
the second argument is the SUNLinearSolver object created above. The third argument is an optional SUNMatrix
object to accompany matrix-based SUNLinearSolver inputs (for matrix-free linear solvers, the third argument should
be NULL). A call to this function initializes the ARKLS linear solver interface, linking it to the ARKODE integrator,
and allows the user to specify additional parameters and routines pertinent to their choice of linear solver.

int ARKodeSetLinearSolver (void *arkode_mem, SUNLinearSolver LS, SUNMatrix J)

This function specifies the SUNLinearSolver object that ARKODE should use, as well as a template Jacobian
SUNMatrix object (if applicable).

Parameters
» arkode_mem — pointer to the ARKODE memory block.

* LS —the SUNLinearSolver object to use.

5.3. ARKODE User-callable functions 83



User Documentation for ARKODE, v6.2.1

* J — the template Jacobian SUNMatrix object to use (or NULL if not applicable).
Return values

* ARKLS_SUCCESS - the function exited successfully.

e ARKLS_MEM_NULL - arkode_mem was NULL.

e ARKLS_MEM_FAIL - there was a memory allocation failure.

e ARKLS_ILL_INPUT — ARKLS is incompatible with the provided LS or J input objects, or
the current N_Vector module.

ARK_STEPPER_UNSUPPORTED - linear solvers are not supported by the current time-stepping
module.

Note

This is only compatible with time-stepping modules that support implicit algebraic solvers.
If LS is a matrix-free linear solver, then the J argument should be NULL.

If LS is a matrix-based linear solver, then the template Jacobian matrix J will be used in the solve process, so if
additional storage is required within the SUNMatrix object (e.g. for factorization of a banded matrix), ensure
that the input object is allocated with sufficient size (see the documentation of the particular SUNMATRIX
type in the §9 for further information).

When using sparse linear solvers, it is typically much more efficient to supply J so that it includes the full
sparsity pattern of the Newton system matrices A = M — ~.J, even if J itself has zeros in nonzero locations
of M. The reasoning for this is that A is constructed in-place, on top of the user-specified values of J, so if
the sparsity pattern in J is insufficient to store .4 then it will need to be resized internally by ARKODE.

Added in version 6.1.0.

5.3.4 Mass matrix solver specification functions

As discussed in §2.15.6, if the ODE system involves a non-identity mass matrix M # I, then ARKODE must solve
linear systems of the form

Mx =b.

ARKODE’s ARKLS mass-matrix linear solver interface supports all valid SUNLinearSolver modules for this task.
For iterative linear solvers, user-supplied preconditioning can be applied. For the specification of a preconditioner, see
the iterative linear solver portions of §5.3.8 and §5.4. If preconditioning is to be performed, user-supplied functions
should be used to define left and right preconditioner matrices P; and P (either of which could be the identity matrix),
such that the product P; P, approximates the mass matrix M.

To specify a generic linear solver for ARKODE to use for mass matrix systems, after the call to *StepCreate but
before any calls to ARKodeEvolve (), the user’s program must create the appropriate SUNLinearSolver object and
call the function ARKodeSetMassLinearSolver (), as documented below. The first argument passed to this function
is the ARKODE memory pointer returned by *StepCreate; the second argument is the desired SUNLinearSolver
object to use for solving mass matrix systems. The third object is a template SUNMatrix to use with the provided
SUNLinearSolver (if applicable). The fourth input is a flag to indicate whether the mass matrix is time-dependent,
i.e. M = M(t), or not. A call to this function initializes the ARKLS mass matrix linear solver interface, linking this
to the main ARKODE integrator, and allows the user to specify additional parameters and routines pertinent to their
choice of linear solver.

84 Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

Note: if the user program includes linear solvers for both the Newton and mass matrix systems, these must have the
same type:

* Ifboth are matrix-based, then they must utilize the same SUNMatrix type, since these will be added when forming
the Newton system matrix .A. In this case, both the Newton and mass matrix linear solver interfaces can use the
same SUNLinearSolver object, although different solver objects (e.g. with different solver parameters) are also
allowed.

* If both are matrix-free, then the Newton and mass matrix SUNLinearSolver objects must be different. These
may even use different solver algorithms (SPGMR, SPBCGS, etc.), if desired. For example, if the mass matrix
is symmetric but the Jacobian is not, then PCG may be used for the mass matrix systems and SPGMR for the
Newton systems.

int ARKodeSetMassLinearSolver (void *arkode_mem, SUNLinearSolver LS, SUNMatrix M, sunbooleantype
time_dep)

This function specifies the SUNLinearSolver object that ARKODE should use for mass matrix systems, as well
as a template SUNMatrix object.

Parameters
» arkode_mem — pointer to the ARKODE memory block.
» LS —the SUNLinearSolver object to use.
* M- the template mass SUNMatrix object to use.

* time_dep - flag denoting whether the mass matrix depends on the independent variable
(M = M(t)) or not (M # M (t)). SUNTRUE indicates time-dependence of the mass matrix.

Return values
* ARKLS_SUCCESS - the function exited successfully.
e ARKLS_MEM_NULL - arkode_mem was NULL.

ARKLS_MEM_FAIL - there was a memory allocation failure.

e ARKLS_ILL_INPUT — ARKLS is incompatible with the provided LS or M input objects, or
the current N_Vector module.

ARK_STEPPER_UNSUPPORTED — non-identity mass matrices are not supported by the current
time-stepping module.

Note

This is only compatible with time-stepping modules that support non-identity mass matrices.
If LS is a matrix-free linear solver, then the M argument should be NULL.

If LS is a matrix-based linear solver, then the template mass matrix M will be used in the solve process, so if
additional storage is required within the SUNMatrix object (e.g. for factorization of a banded matrix), ensure
that the input object is allocated with sufficient size.

If called with time_dep set to SUNFALSE, then the mass matrix is only computed and factored once (or when
either *StepReInit or ARKodeResize () are called), with the results reused throughout the entire ARKODE
simulation.

Unlike the system Jacobian, the system mass matrix is not approximated using finite-differences of any func-
tions provided to ARKODE. Hence, use of the a matrix-based LS requires the user to provide a mass-matrix
constructor routine (see ARKLsMassFn and ARKodeSetMassFn()).

5.3. ARKODE User-callable functions 85



User Documentation for ARKODE, v6.2.1

Similarly, the system mass matrix-vector-product is not approximated using finite-differences of any functions
provided to ARKODE. Hence, use of a matrix-free LS requires the user to provide a mass-matrix-times-vector
product routine (see ARKLsMassTimesVecFn and ARKodeSetMassTimes()).

Added in version 6.1.0.

5.3.5 Nonlinear solver interface functions

When changing the nonlinear solver in ARKODE, after the call to *StepCreate but before any calls to ARKodeE-
volve (), the user’s program must create the appropriate SUNNonlinearSolver object and call ARKodeSetNonlin-
earSolver(), as documented below. If any calls to ARKodeEvolve () have been made, then ARKODE will need to be
reinitialized by calling *StepReInit to ensure that the nonlinear solver is initialized correctly before any subsequent
calls to ARKodeEvolve().

The first argument passed to the routine ARKodeSetNonlinearSolver () is the ARKODE memory pointer returned
by *StepCreate; the second argument passed to this function is the desired SUNNonlinearSolver object to use for
solving the nonlinear system for each implicit stage. A call to this function attaches the nonlinear solver to the main
ARKODE integrator.

int ARKodeSetNonlinearSolver (void *arkode_mem, SUNNonlinearSolver NLS)
This function specifies the SUNNonlinearSolver object that ARKODE should use for implicit stage solves.

Parameters
» arkode_mem — pointer to the ARKODE memory block.
* NLS — the SUNNonlinearSolver object to use.
Return values
* ARK_SUCCESS - the function exited successfully.
* ARK_MEM_NULL - arkode_mem was NULL.
e ARK_MEM_FATL - there was a memory allocation failure.
* ARK_ILL_INPUT — ARKODE is incompatible with the provided NLS input object.

ARK_STEPPER_UNSUPPORTED - nonlinear solvers are not supported by the current time-
stepping module.

Note

This is only compatible with time-stepping modules that support implicit algebraic solvers.

ARKODE will use the Newton SUNNonlinearSolver module by default; a call to this routine replaces that
module with the supplied NLS object.

Added in version 6.1.0.

86 Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

5.3.6 Rootfinding initialization function

As described in §2.16, while solving the IVP, ARKODE’s time-stepping modules have the capability to find the roots
of a set of user-defined functions. To activate the root-finding algorithm, call the following function. This is normally
called only once, prior to the first call to ARKodeEvolve (), but if the rootfinding problem is to be changed during the
solution, ARKodeRootInit () can also be called prior to a continuation call to ARKodeEvolve().

Note

The solution is interpolated to the times at which roots are found.

int ARKodeRootInit (void *arkode_mem, int nrtfn, ARKRootFn g)

Initializes a rootfinding problem to be solved during the integration of the ODE system. It must be called after
*StepCreate, and before ARKodeEvolve().

Parameters
» arkode_mem — pointer to the ARKODE memory block.
e nrtfn — number of functions g;, an integer > 0.

* g —name of user-supplied function, of type ARKRootFn (), defining the functions g; whose
roots are sought.

Return values
ARK_SUCCESS - the function exited successfully.
e ARK_MEM_NULL - arkode_mem was NULL.

* ARK_MEM_FAIL — there was a memory allocation failure.

ARK_ILL_INPUT - nrtfn is greater than zero but g is NULL.

Note

To disable the rootfinding feature after it has already been initialized, or to free memory associated with
ARKODE’s rootfinding module, call ARKodeRootInit with nrtfn = 0.

Similarly, if a new IVP is to be solved with a call to *StepReInit, where the new IVP has no rootfinding
problem but the prior one did, then call ARKodeRootInit with nrifn = 0.

Added in version 6.1.0.

5.3.7 ARKODE solver function

This is the central step in the solution process — the call to perform the integration of the IVP. The input argument itask
specifies one of two modes as to where ARKODE is to return a solution. These modes are modified if the user has set
a stop time (with a call to the optional input function ARKodeSetStopTime ()) or has requested rootfinding.

int ARKodeEvolve (void *arkode_mem, sunrealtype tout, N_Vector yout, sunrealtype *tret, int itask)
Integrates the ODE over an interval in £.

Parameters
» arkode_mem — pointer to the ARKODE memory block.

* tout - the next time at which a computed solution is desired.

5.3. ARKODE User-callable functions 87



User Documentation for ARKODE, v6.2.1

* yout — the computed solution vector.
* tret - the time corresponding to yout (output).
» itask — a flag indicating the job of the solver for the next user step.

The ARK_NORMAL option causes the solver to take internal steps until it has just overtaken
a user-specified output time, fout, in the direction of integration, i.e. t,_; < tout < t,, for
forward integration, or ¢,, < fout < t,,_1 for backward integration. If interpolation is enabled
(on by default), it will then compute an approximation to the solution y(tout) by interpolation
(as described in §2.2). Otherwise, the solution at the time reached by the solver is returned,

y(tret).

The ARK_ONE_STEP option tells the solver to only take a single internal step, y,—1 — Yn,
and return the solution at that point, y,,, in the vector yout.

Return values
» ARK_SUCCESS - the function exited successfully.

e ARK_ROOT_RETURN — ARKodeEvolve() succeeded, and found one or more roots. If the
number of root functions, nrtfn, is greater than 1, call ARKodeGetRootInfo() to see which
g; were found to have a root at (*tret).

ARK_TSTOP_RETURN — ARKodeEvolve () succeeded and returned at tstop.
ARK_MEM_NULL - arkode_mem was NULL.
e ARK_NO_MALLOC — arkode_mem was not allocated.

e ARK_ILL_INPUT - one of the inputs to ARKodeEvolve() is illegal, or some other input to
the solver was either illegal or missing. Details will be provided in the error message. Typical
causes of this failure:

(a) A component of the error weight vector became zero during internal time-stepping.

(b) The linear solver initialization function (called by the user after calling *StepCreate)
failed to set the linear solver-specific Isolve field in arkode_mem.

(c) A root of one of the root functions was found both at a point ¢ and also very near ¢.
(d) The initial condition violates the inequality constraints.

* ARK_TOO_MUCH_WORK - the solver took mxstep internal steps but could not reach fout. The
default value for mxstep is MXSTEP_DEFAULT = 500.

ARK_TOO_MUCH_ACC — the solver could not satisfy the accuracy demanded by the user for
some internal step.

* ARK_ERR_FAILURE - error test failures occurred either too many times (ark_maxnef’) during
one internal time step or occurred with |A| = hypin.

ARK_CONV_FAILURE - either convergence test failures occurred too many times (ark_-
maxncf) during one internal time step or occurred with || = hnip.

e ARK_LINIT_FAIL — the linear solver’s initialization function failed.

* ARK_LSETUP_FAIL - the linear solver’s setup routine failed in an unrecoverable manner.

ARK_LSOLVE_FAIL - the linear solver’s solve routine failed in an unrecoverable manner.

e ARK_MASSINIT_FAIL — the mass matrix solver’s initialization function failed.

ARK_MASSSETUP_FAIL — the mass matrix solver’s setup routine failed.
e ARK_MASSSOLVE_FAIL - the mass matrix solver’s solve routine failed.

88

Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

* ARK_VECTOROP_ERR — a vector operation error occurred.

* ARK_DOMEIG_FAIL - the dominant eigenvalue function failed. It is either not provided or
returns an illegal value.

e ARK_MAX_ STAGE_LIMIT_FAIL - stepper failed to achieve stable results. Either reduce the
step size or increase the stage_max_limit

Note

The input vector yout can use the same memory as the vector y0 of initial conditions that was passed to
*StepCreate.

In ARK_ONE_STEP mode, tout is used only on the first call, and only to get the direction and a rough scale
of the independent variable.

All failure return values are negative and so testing the return argument for negative values will trap all
ARKodeEvolve () failures.

Since interpolation may reduce the accuracy in the reported solution, if full method accuracy is desired the
user should issue a call to ARKodeSetStopTime () before the call to ARKodeEvolve () to specify a fixed
stop time to end the time step and return to the user. Upon return from ARKodeEvolve(), a copy of the
internal solution y,, will be returned in the vector yout. Once the integrator returns at a £stop time, any future
testing for zstop is disabled (and can be re-enabled only though a new call to ARKodeSetStopTime()).

On any error return in which one or more internal steps were taken by ARKodeEvolve (), the returned values
of tret and yout correspond to the farthest point reached in the integration. On all other error returns, tret and
yout are left unchanged from those provided to the routine.

Added in version 6.1.0.

5.3.8 Optional input functions

There are numerous optional input parameters that control the behavior of ARKODE, each of which may be modified
from its default value through calling an appropriate input function. The following tables list all optional input functions,
grouped by which aspect of ARKODE they control. Detailed information on the calling syntax and arguments for each
function are then provided following each table.

The optional inputs are grouped into the following categories:
* General ARKODE options (Optional inputs for ARKODE),
* Step adaptivity solver options (Optional inputs for time step adaptivity),
 Implicit stage solver options (Optional inputs for implicit stage solves),
* Linear solver interface options (Linear solver interface optional input functions), and
* Rootfinding options (Rootfinding optional input functions).

For the most casual use of ARKODE, relying on the default set of solver parameters, the reader can skip to section on
user-supplied functions, §5.4.

We note that, on an error return, all of the optional input functions send an error message to the error handler function.
All error return values are negative, so a test on the return arguments for negative values will catch all errors. Finally, a
call to an ARKodeSet*** function can generally be made from the user’s calling program at any time after creation of
the ARKODE solver via *StepCreate, and, the function exited successfully, takes effect immediately. ARKodeSet***
functions that cannot be called at any time note this in the “notes” section of the function documentation.

5.3. ARKODE User-callable functions 89



User Documentation for ARKODE, v6.2.1

5.3.8.1 Optional inputs for ARKODE

Optional input Function name Default

Return ARKODE parameters to their defaults =~ ARKodeSetDefaults () internal

Set integrator method order ARKodeSetOrder () 4

Set dense output interpolation type (SPRK- ARKodeSetInterpolantType() ARK_INTERP_LA-

Step) GRANGE

Set dense output interpolation type (others) ARKodeSetInterpolantType() ARK_INTERP_HERMITE

Set dense output polynomial degree ARKodeSetInterpolantDegree () 5

Disable time step adaptivity (fixed-step mode) ARKodeSetFixedStep() disabled

Set forward or backward integration direction = ARKodeSetStepDirection() 0.0

Supply an initial step size to attempt ARKodeSetInitStep() estimated

Maximum no. of warnings for ¢,, + h = t,, ARKodeSetMaxHnilWarns () 10

Maximum no. of internal steps before fout ARKodeSetMaxNumSteps () 500

Maximum absolute step size ARKodeSetMaxStep() 00

Minimum absolute step size ARKodeSetMinStep () 0.0

Set a value for ¢4, ARKodeSetStopTime () undefined

Interpolate at ¢4, ARKodeSetInterpolateStop- SUNFALSE
Time()

Disable the stop time ARKodeClearStopTime () N/A

Supply a pointer for user data ARKodeSetUserData() NULL

Maximum no. of ARKODE error test failures  ARKodeSetMaxErrTestFails() 7

Set inequality constraints on solution ARKodeSetConstraints() NULL

Set max number of constraint failures ARKodeSetMaxNumConstrFails () 10

int ARKodeSetDefaults (void *arkode_mem)

Resets all optional input parameters to ARKODE’s original default values.

Parameters

» arkode_mem — pointer to the ARKODE memory block.

Return values

* ARK_SUCCESS — the function exited successfully.

* ARK_MEM_NULL - arkode_mem was NULL.
e ARK_ILL_INPUT - an argument had an illegal value.

Note

Does not change the user_data pointer or any parameters within the specified time-stepping module.

Also leaves alone any data structures or options related to root-finding (those can be reset using ARKodeRoo-

tInit()).

Added in version 6.1.0.

int ARKodeSetOrder (void *arkode_mem, int ord)

Specifies the order of accuracy for the IVP integration method.

Parameters

» arkode_mem — pointer to the ARKODE memory block.

90

Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

* ord - requested order of accuracy.
Return values
* ARK_SUCCESS — the function exited successfully.
e ARK_MEM_NULL - arkode_mem was NULL.
e ARK_ILL_INPUT - an argument had an illegal value.
* ARK_STEPPER_UNSUPPORTED - this option is not supported by the time-stepping module.

Note

For explicit methods, the allowed values are 2 < ord < 8. For implicit methods, the allowed values are 2 <
ord < 5, and for ImEx methods the allowed values are 2 < ord < 5. Any illegal input will result in the
default value of 4.

Since ord affects the memory requirements for the internal ARKODE memory block, it cannot be changed
after the first call to ARKodeEvolve (), unless *StepRelInit is called.

Added in version 6.1.0.

int ARKodeSetInterpolantType (void *arkode_mem, int itype)

Specifies the interpolation type used for dense output (interpolation of solution output values) and implicit
method predictors. By default, Hermite interpolation is used except with SPRK methods where Lagrange inter-
polation is the default.

This routine must be called after the calling a stepper constructor. After the first call to ARKodeEvolve () the
interpolation type may not be changed without first calling a stepper ReInit function.

The Hermite interpolation module (ARK_INTERP_HERMITE) is described in §2.2.1, and the Lagrange interpola-
tion module (ARK_INTERP_LAGRANGE) is described in §2.2.2. ARK_INTERP_NONE will disable interpolation.

When interpolation is disabled, using rootfinding is not supported, implicit methods must use the trivial predictor
(the default option), and interpolation at stop times cannot be used (interpolating at stop times is disabled by
default). With interpolation disabled, calling ARKodeEvoIlve () in ARK_NORMAL mode will return at or past the
requested output time (setting a stop time may still be used to halt the integrator at a specific time).

Disabling interpolation will reduce the memory footprint of an integrator by two or more state vectors (depending
on the interpolant type and degree) which can be beneficial when interpolation is not needed e.g., when integrat-
ing to a final time without output in between or using a solver from ARKODE as a fast time scale integrator with
MRI methods.

This routine frees any previously-allocated interpolation module, and re-creates one according to the specified
argument.

Parameters
» arkode_mem — pointer to the ARKODE memory block.

» itype - requested interpolant type: ARK_INTERP_HERMITE, ARK_INTERP_LAGRANGE, or
ARK_INTERP_NONE

Return values
» ARK_SUCCESS - the function exited successfully.
* ARK_MEM_NULL - arkode_mem was NULL.
* ARK_MEM_FAIL — the interpolation module could not be allocated.

5.3. ARKODE User-callable functions 91



User Documentation for ARKODE, v6.2.1

e ARK_ILL_INPUT - the irype argument is not recognized or the interpolation module has
already been initialized.

Changed in version 6.1.0: This function replaces stepper specific versions in ARKStep, ERKStep, MRIStep, and
SPRKStep.

Added the ARK_INTERP_NONE option to disable interpolation.

Values set by a previous call to ARKStepSetInterpolantDegree() are no longer nullified by a call to ARK-
StepSetInterpolantType().

int ARKodeSetInterpolantDegree (void *arkode_mem, int degree)

Specifies the degree of the polynomial interpolant used for dense output (i.e. interpolation of solution output
values and implicit method predictors).

Parameters
» arkode_mem — pointer to the ARKODE memory block.
* degree — requested polynomial degree.
Return values
» ARK_SUCCESS - the function exited successfully.
e ARK_MEM_NULL - arkode_mem or the interpolation module are NULL.
e ARK_INTERP_FAIL — this was called after ARKodeEvolve ().

e ARK_ILL_INPUT — an argument had an illegal value or the interpolation module has already
been initialized.

Note

Allowed values are between 0 and 5.

This routine should be called before ARKodeEvolve (). After the first call to ARKodeEvolve () the interpo-
lation degree may not be changed without first calling *StepReInit.

If a user calls both this routine and ARKodeSetInterpolantType(), then ARKodeSetInterpolant-
Type () must be called first.

Since the accuracy of any polynomial interpolant is limited by the accuracy of the time-step solutions on
which it is based, the actual polynomial degree that is used by ARKODE will be the minimum of ¢ — 1 and
the input degree, for ¢ > 1 where ¢ is the order of accuracy for the time integration method.

When ¢ = 1, a linear interpolant is the default to ensure values obtained by the integrator are returned at the
ends of the time interval.

Added in version 6.1.0.

int ARKodeSetFixedStep (void *arkode_mem, sunrealtype hfixed)

Disables time step adaptivity within ARKODE, and specifies the fixed time step size to use for the following
internal step(s).

Parameters
» arkode_mem — pointer to the ARKODE memory block.
» hfixed - value of the fixed step size to use.

Return values

» ARK_SUCCESS - the function exited successfully.

92 Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

e ARK_MEM_NULL - arkode_mem was NULL.
e ARK_ILL_INPUT - an argument had an illegal value.

Note

Pass 0.0 to return ARKODE to the default (adaptive-step) mode — this is only allowed when using a time-
stepping module that supports temporal adaptivity.

Use of this function is not generally recommended, since it gives no assurance of the validity of the computed
solutions. It is primarily provided for code-to-code verification testing purposes.

When using ARKodeSetFixedStep(), any values provided to the functions ARKodeSetInitStep(),
ARKodeSetMaxErrTestFails(), ARKodeSetCFLFraction(), ARKodeSetErrorBias(), ARKode-
SetFixedStepBounds (), ARKodeSetMaxCFailGrowth(), ARKodeSetMaxEFailGrowth(), ARKode-
SetMaxFirstGrowth(), ARKodeSetMaxGrowth(), ARKodeSetMinReduction(), ARKodeSetSafety-
Factor(), ARKodeSetSmallNumEFails(), ARKodeSetStabilityFn(), and ARKodeSetAdaptCon-
troller() will be ignored, since temporal adaptivity is disabled.

If both ARKodeSetFixedStep() and ARKodeSetStopTime () are used, then the fixed step size will be
used for all steps until the final step preceding the provided stop time (which may be shorter). To resume
use of the previous fixed step size, another call to ARKodeSetFixedStep () must be made prior to calling
ARKodeEvolve () to resume integration.

It is not recommended that ARKodeSetFixedStep () be used in concert with ARKodeSetMaxStep() or
ARKodeSetMinStep (), since at best those latter two routines will provide no useful information to the solver,
and at worst they may interfere with the desired fixed step size.

Added in version 6.1.0.

int ARKodeSetStepDirection(void *arkode_mem, sunrealtype stepdir)

Specifies the direction of integration (forward or backward).
Parameters
» arkode_mem — pointer to the ARKODE memory block.

» stepdir - value whose sign determines the direction. A positive value selects forward inte-
gration, a negative value selects backward integration, and zero leaves the current direction
unchanged.

Return values
» ARK_SUCCESS - the function exited successfully.
* ARK_MEM_NULL - arkode_mem was NULL.
* ARK_ILL_INPUT - an argument had an illegal value.

Note

The step direction can only be set after a call to either *Create, *StepReInit, or ARKodeReset () but
before a call to ARKodeEvolve().

When the direction changes for an adaptive method, the adaptivity controller and next step size are reset. A
new initial step size will be estimated at the next call to ARKodeEvolve () or can be specified with ARKode-
SetInitStep().

Added in version 6.2.0.

5.3. ARKODE User-callable functions 93



User Documentation for ARKODE, v6.2.1

int ARKodeSetInitStep (void *arkode_mem, sunrealtype hin)

Specifies the initial time step size ARKODE should use after initialization, re-initialization, or resetting.
Parameters
» arkode_mem — pointer to the ARKODE memory block.
* hin - value of the initial step to be attempted (# 0).
Return values
* ARK_SUCCESS — the function exited successfully.
* ARK_MEM_NULL - arkode_mem was NULL.
e ARK_ILL_INPUT - an argument had an illegal value.

Note

Pass 0.0 to use the default value — this is only allowed when using a time-stepping module that supports
temporal adaptivity.

2
By default, ARKODE estimates the initial step size to be h = , / ——, where § is estimate of the second

114l
derivative of the solution at ¢g.

This routine will also reset the step size and error history.

Added in version 6.1.0.

int ARKodeSetMaxHnilWarns (void *arkode_mem, int mxhnil)

Specifies the maximum number of messages issued by the solver to warn that ¢ + h = ¢ on the next internal step,
before ARKODE will instead return with an error.

Parameters
» arkode_mem — pointer to the ARKODE memory block.
» mxhnil — maximum allowed number of warning messages (> 0).
Return values
* ARK_SUCCESS — the function exited successfully.
e ARK_MEM_NULL - arkode_mem was NULL.
e ARK_ILL_INPUT - an argument had an illegal value.
* ARK_STEPPER_UNSUPPORTED - adaptive step sizes are not supported by the current time-

stepping module.

Note

This is only compatible with time-stepping modules that support temporal adaptivity.
The default value is 10; set mxhnil to zero to specify this default.

A negative value indicates that no warning messages should be issued.

Added in version 6.1.0.

94 Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

int ARKodeSetMaxNumSteps (void *arkode_mem, long int mxsteps)

Specifies the maximum number of steps to be taken by the solver in its attempt to reach the next output time,
before ARKODE will return with an error.

Parameters
» arkode_mem — pointer to the ARKODE memory block.
* mxsteps — maximum allowed number of internal steps.
Return values
* ARK_SUCCESS — the function exited successfully.
* ARK_MEM_NULL - arkode_mem was NULL.
e ARK_ILL_INPUT - an argument had an illegal value.

Note

Passing mxsteps = 0 results in ARKODE using the default value (500).

Passing mxsteps < 0 disables the test (not recommended).

Added in version 6.1.0.

int ARKodeSetMaxStep (void *arkode_mem, sunrealtype hmax)

Specifies the upper bound on the magnitude of the time step size.

Parameters

» arkode_mem — pointer to the ARKODE memory block.

* hmax — maximum absolute value of the time step size (> 0).
Return values

» ARK_SUCCESS - the function exited successfully.

e ARK_MEM_NULL - arkode_mem was NULL.

e ARK_ILL_INPUT - an argument had an illegal value.

* ARK_STEPPER_UNSUPPORTED - adaptive step sizes are not supported by the current time-
stepping module.

Note

This is only compatible with time-stepping modules that support temporal adaptivity.

Pass hmax < 0.0 to set the default value of co.

Added in version 6.1.0.

int ARKodeSetMinStep (void *arkode_mem, sunrealtype hmin)
Specifies the lower bound on the magnitude of the time step size.

Parameters
» arkode_mem — pointer to the ARKODE memory block.

* hmin — minimum absolute value of the time step size (> 0).

5.3. ARKODE User-callable functions 95



User Documentation for ARKODE, v6.2.1

Return values
* ARK_SUCCESS — the function exited successfully.
e ARK_MEM_NULL - arkode_mem was NULL.
e ARK_ILL_INPUT - an argument had an illegal value.

* ARK_STEPPER_UNSUPPORTED - adaptive step sizes are not supported by the current time-
stepping module.

Note

This is only compatible with time-stepping modules that support temporal adaptivity.

Pass hmin < 0.0 to set the default value of 0.

Added in version 6.1.0.

int ARKodeSetStopTime (void *arkode_mem, sunrealtype tstop)

Specifies the value of the independent variable ¢ past which the solution is not to proceed.
Parameters
» arkode_mem — pointer to the ARKODE memory block.
* tstop — stopping time for the integrator.
Return values
* ARK_SUCCESS — the function exited successfully.
* ARK_MEM_NULL - arkode_mem was NULL.
e ARK_ILL_INPUT - an argument had an illegal value.

Note

The default is that no stop time is imposed.

Once the integrator returns at a stop time, any future testing for tstop is disabled (and can be re-enabled
only though a new call to ARKodeSetStopTime()).

A stop time not reached before a call to *StepReInit or ARKodeReset () will remain active but can be
disabled by calling ARKodeClearStopTime().

Added in version 6.1.0.

int ARKodeSetInterpolateStopTime (void *arkode_mem, sunbooleantype interp)

Specifies that the output solution should be interpolated when the current ¢ equals the specified tstop (instead
of merely copying the internal solution y,,).

Parameters

» arkode_mem — pointer to the ARKODE memory block.

* interp - flag indicating to use interpolation (1) or copy (0).
Return values

* ARK_SUCCESS — the function exited successfully.

e ARK_MEM_NULL - arkode_mem was NULL.

96 Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

Added in version 6.1.0.

int ARKodeClearStopTime (void *arkode_mem)
Disables the stop time set with ARKodeSetStopTime().

Parameters

» arkode_mem — pointer to the ARKODE memory block.
Return values

* ARK_SUCCESS — the function exited successfully.

e ARK_MEM_NULL - arkode_mem was NULL.

Note

The stop time can be re-enabled though a new call to ARKodeSetStopTime ().

Added in version 6.1.0.
int ARKodeSetUserData (void *arkode_mem, void *user_data)
Specifies the user data block user_data and attaches it to the main ARKODE memory block.
Parameters
» arkode_mem — pointer to the ARKODE memory block.
» user_data — pointer to the user data.
Return values
* ARK_SUCCESS — the function exited successfully.
* ARK_MEM_NULL - arkode_mem was NULL.
e ARK_ILL_INPUT - an argument had an illegal value.

Note

If specified, the pointer to user_data is passed to all user-supplied functions for which it is an argument;
otherwise NULL is passed.

If user_data is needed in user preconditioner functions, the call to this function must be made before any
calls to ARKodeSetLinearSolver () and/or ARKodeSetMassLinearSolver().

Added in version 6.1.0.

int ARKodeSetMaxErrTestFails (void *arkode_mem, int maxnef)

Specifies the maximum number of error test failures permitted in attempting one step, before returning with an
error.

Parameters

» arkode_mem — pointer to the ARKODE memory block.

» maxnef — maximum allowed number of error test failures (> 0).
Return values

* ARK_SUCCESS — the function exited successfully.

5.3. ARKODE User-callable functions 97



User Documentation for ARKODE, v6.2.1

e ARK_MEM_NULL - arkode_mem was NULL.
e ARK_ILL_INPUT - an argument had an illegal value.

» ARK_STEPPER_UNSUPPORTED - adaptive step sizes are not supported by the current time-
stepping module.

Note

This is only compatible with time-stepping modules that support temporal adaptivity.

The default value is 7; set maxnef < 0 to specify this default.

Added in version 6.1.0.

int ARKodeSetConstraints (void *arkode_mem, N Vecror constraints)
Specifies a vector defining inequality constraints for each component of the solution vector y.

Parameters
» arkode_mem — pointer to the ARKODE memory block.

» constraints — vector of constraint flags. Each component specifies the type of solution

constraint:
0.0 = no constraint is imposed on y;,
1.0 = y; =20,
constraints[i] = -1.0 = y; <0,
20 = y >0,
-20 = y; <0.

Return values
» ARK_SUCCESS - the function exited successfully.
* ARK_MEM_NULL - arkode_mem was NULL.
* ARK_TILL_INPUT - the constraints vector contains illegal values.

* ARK_STEPPER_UNSUPPORTED - adaptive step sizes are not supported by the current time-
stepping module.

Note

This is only compatible with time-stepping modules that support temporal adaptivity.

The presence of a non-NULL constraints vector that is not 0.0 in all components will cause constraint checking
to be performed. However, a call with 0.0 in all components of constraints will result in an illegal input
return. A NULL constraints vector will disable constraint checking.

After a call to ARKodeResize () inequality constraint checking will be disabled and a call to ARKodeSet-
Constraints() is required to re-enable constraint checking.

Since constraint-handling is performed through cutting time steps that would violate the constraints, it is
possible that this feature will cause some problems to fail due to an inability to enforce constraints even at
the minimum time step size. Additionally, the features ARKodeSetConstraints() and ARKodeSetFixed-
Step () are incompatible, and should not be used simultaneously.

Added in version 6.1.0.

98 Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

int ARKodeSetMaxNumConstrFails (void *arkode_mem, int maxfails)

Specifies the maximum number of constraint failures in a step before ARKODE will return with an error.
Parameters
» arkode_mem — pointer to the ARKODE memory block.
» maxfails — maximum allowed number of constrain failures.
Return values
» ARK_SUCCESS - the function exited successfully.
* ARK_MEM_NULL - arkode_mem was NULL.

» ARK_STEPPER_UNSUPPORTED - adaptive step sizes are not supported by the current time-
stepping module.

Note

This is only compatible with time-stepping modules that support temporal adaptivity.

Passing maxfails <= 0 results in ARKODE using the default value (10).

Added in version 6.1.0.

5.3.8.2 Optional inputs for time step adaptivity

The mathematical explanation of ARKODE’s time step adaptivity algorithm, including how each of the parameters
below is used within the code, is provided in §2.11.

Optional input Function name Default
Provide a SUNAdaptController for ARKODE to use ARKodeSetAdaptController() PID
Adjust the method order used in the controller ARKodeSetAdaptivityAdjustment() -1
Explicit stability safety factor ARKodeSetCFLFraction() 0.5
Time step error bias factor ARKodeSetErrorBias () 1.5
Bounds determining no change in step size ARKodeSetFixedStepBounds () 1.01.5
Maximum step growth factor on convergence fail ARKodeSetMaxCFailGrowth() 0.25
Maximum step growth factor on error test fail ARKodeSetMaxEFailGrowth() 0.3
Maximum first step growth factor ARKodeSetMaxFirstGrowth() 10000.0
Maximum allowed general step growth factor ARKodeSetMaxGrowth() 20.0
Minimum allowed step reduction factor on error test fail ~ARKodeSetMinReduction() 0.1
Time step safety factor ARKodeSetSafetyFactor() 0.96
Error fails before MaxEFailGrowth takes effect ARKodeSetSmallNumEFails () 2
Explicit stability function ARKodeSetStabilityFn() none
Set accumulated error estimation type ARKodeSetAccumulatedErrorType() none
Reset accumulated error ARKodeResetAccumulatedError ()

int ARKodeSetAdaptController (void *arkode_mem, SUNAdaptController C)
Sets a user-supplied time-step controller object.

Parameters

» arkode_mem — pointer to the ARKODE memory block.

5.3. ARKODE User-callable functions 99



User Documentation for ARKODE, v6.2.1

» C— user-supplied time adaptivity controller.
Return values
* ARK_SUCCESS — the function exited successfully.
e ARK_MEM_NULL - arkode_mem was NULL.
* ARK_MEM_FAIL — C was NULL and the PID controller could not be allocated.

* ARK_STEPPER_UNSUPPORTED - adaptive step sizes are not supported by the current time-
stepping module.

Note

If C is NULL then the PID controller will be created (see §12.2).
This is only compatible with time-stepping modules that support temporal adaptivity.

Not all time-stepping modules are compatible with all types of SUNAdaptController objects. While all
steppers that support temporal adaptivity support controllers with SUNAdaptController_Type type SUN_-
ADAPTCONTROLLER_H, only MRIStep supports inputs with type SUN_ADAPTCONTROLLER_MRI_H_TOL.

Added in version 6.1.0.

int ARKodeSetAdaptivityAdjustment (void *arkode_mem, int adjust)

Called by a user to adjust the method order supplied to the temporal adaptivity controller. For example, if the
user expects order reduction due to problem stiffness, they may request that the controller assume a reduced order
of accuracy for the method by specifying a value adjust < 0.

Parameters
» arkode_mem — pointer to the ARKODE memory block.
* adjust — adjustment factor (default is -1).
Return values
» ARK_SUCCESS - the function exited successfully.
* ARK_MEM_NULL - arkode_mem was NULL.
e ARK_ILL_INPUT - an argument had an illegal value.

» ARK_STEPPER_UNSUPPORTED - adaptive step sizes are not supported by the current time-
stepping module.

Note

This is only compatible with time-stepping modules that support temporal adaptivity.

This should be called prior to calling ARKodeEvolve(), and can only be reset following a call to
*StepRelnit.

Added in version 6.1.0.

int ARKodeSetCFLFraction(void *arkode_mem, sunrealtype cfl_frac)
Specifies the fraction of the estimated explicitly stable step to use.

Parameters

» arkode_mem — pointer to the ARKODE memory block.

100 Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

» cfl_frac — maximum allowed fraction of explicitly stable step (default is 0.5).
Return values

* ARK_SUCCESS — the function exited successfully.

* ARK_MEM_NULL - arkode_mem was NULL.

e ARK_ILL_INPUT - an argument had an illegal value.

* ARK_STEPPER_UNSUPPORTED - adaptive step sizes are not supported by the current time-

stepping module.

Note

This is only compatible with time-stepping modules that support temporal adaptivity.

Any non-positive parameter will imply a reset to the default value.

Added in version 6.1.0.

int ARKodeSetErrorBias (void *arkode_mem, sunrealtype bias)
Specifies the bias to be applied to the error estimates within accuracy-based adaptivity strategies.

Parameters

» arkode_mem — pointer to the ARKODE memory block.

» bias — bias applied to error in accuracy-based time step estimation (default is 1.5).

Return values
» ARK_SUCCESS - the function exited successfully.
» ARK_MEM_NULL - arkode_mem was NULL.
e ARK_ILL_INPUT - an argument had an illegal value.

* ARK_STEPPER_UNSUPPORTED - adaptive step sizes are not supported by the current time-

stepping module.

Note

This is only compatible with time-stepping modules that support temporal adaptivity.

Any value below 1.0 will imply a reset to the default value.

If both this and one of the stepper SetAdaptivityMethod functions or ARKodeSetAdaptController()

will be called, then this routine must be called second.

Added in version 6.1.0.

int ARKodeSetFixedStepBounds (void *arkode_mem, sunrealtype 1b, sunrealtype ub)

Specifies the step growth interval in which the step size will remain unchanged.
Parameters
» arkode_mem — pointer to the ARKODE memory block.
* 1b - lower bound on window to leave step size fixed (default is 1.0).

* ub — upper bound on window to leave step size fixed (default is 1.5).

5.3. ARKODE User-callable functions

101



User Documentation for ARKODE, v6.2.1

Return values
* ARK_SUCCESS — the function exited successfully.
e ARK_MEM_NULL - arkode_mem was NULL.
e ARK_ILL_INPUT - an argument had an illegal value.

* ARK_STEPPER_UNSUPPORTED - adaptive step sizes are not supported by the current time-
stepping module.

Note

This is only compatible with time-stepping modules that support temporal adaptivity.

Any interval not containing 1.0 will imply a reset to the default values.

Added in version 6.1.0.

int ARKodeSetMaxCFailGrowth(void *arkode_mem, sunrealtype etacf)

Specifies the maximum step size growth factor upon an algebraic solver convergence failure on a stage solve
within a step, 7.y from §2.15.3.1.

Parameters

» arkode_mem — pointer to the ARKODE memory block.

» etacf - time step reduction factor on a nonlinear solver convergence failure (default is 0.25).
Return values

* ARK_SUCCESS — the function exited successfully.

» ARK_MEM_NULL - arkode_mem was NULL.

e ARK_ILL_INPUT - an argument had an illegal value.

* ARK_STEPPER_UNSUPPORTED - adaptive step sizes are not supported by the current time-
stepping module.

Note

This is only compatible with time-stepping modules that support temporal adaptivity.

Any value outside the interval (0, 1] will imply a reset to the default value.

Added in version 6.1.0.

int ARKodeSetMaxEFailGrowth(void *arkode_mem, sunrealtype etamxf)

Specifies the maximum step size growth factor upon multiple successive accuracy-based error failures in the
solver.

Parameters

» arkode_mem — pointer to the ARKODE memory block.

» etamxf — time step reduction factor on multiple error fails (default is 0.3).
Return values

* ARK_SUCCESS — the function exited successfully.

102 Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

e ARK_MEM_NULL - arkode_mem was NULL.
e ARK_ILL_INPUT - an argument had an illegal value.

» ARK_STEPPER_UNSUPPORTED - adaptive step sizes are not supported by the current time-
stepping module.

Note

This is only compatible with time-stepping modules that support temporal adaptivity.

Any value outside the interval (0, 1] will imply a reset to the default value.

Added in version 6.1.0.

int ARKodeSetMaxFirstGrowth (void *arkode_mem, sunrealtype etamx1)
Specifies the maximum allowed growth factor in step size following the very first integration step.

Parameters

» arkode_mem — pointer to the ARKODE memory block.

* etamxl — maximum allowed growth factor after the first time step (default is 10000.0).
Return values

» ARK_SUCCESS - the function exited successfully.

* ARK_MEM_NULL - arkode_mem was NULL.

e ARK_ILL_INPUT - an argument had an illegal value.

* ARK_STEPPER_UNSUPPORTED - adaptive step sizes are not supported by the current time-
stepping module.

Note

This is only compatible with time-stepping modules that support temporal adaptivity.

Any value < 1.0 will imply a reset to the default value.

Added in version 6.1.0.

int ARKodeSetMaxGrowth (void *arkode_mem, sunrealtype mx_growth)
Specifies the maximum allowed growth factor in step size between consecutive steps in the integration process.

Parameters
» arkode_mem — pointer to the ARKODE memory block.

* mx_growth — maximum allowed growth factor between consecutive time steps (default is
20.0).

Return values
» ARK_SUCCESS - the function exited successfully.
* ARK_MEM_NULL - arkode_mem was NULL.
e ARK_ILL_INPUT - an argument had an illegal value.

5.3. ARKODE User-callable functions 103



User Documentation for ARKODE, v6.2.1

* ARK_STEPPER_UNSUPPORTED - adaptive step sizes are not supported by the current time-
stepping module.

Note

This is only compatible with time-stepping modules that support temporal adaptivity.

Any value < 1.0 will imply a reset to the default value.

Added in version 6.1.0.

int ARKodeSetMinReduction (void *arkode_mem, sunrealtype eta_min)

Specifies the minimum allowed reduction factor in step size between step attempts, resulting from a temporal
error failure in the integration process.

Parameters
» arkode_mem — pointer to the ARKODE memory block.

* eta_min — minimum allowed reduction factor in time step after an error test failure (default
is 0.1).

Return values

» ARK_STEPPER_UNSUPPORTED - adaptive step sizes are not supported by the current time-
stepping module.

* ARK_SUCCESS — the function exited successfully.
* ARK_MEM_NULL - arkode_mem was NULL.
e ARK_ILL_INPUT - an argument had an illegal value.

Note

This is only compatible with time-stepping modules that support temporal adaptivity.

Any value outside the interval (0, 1) will imply a reset to the default value.

Added in version 6.1.0.

int ARKodeSetSafetyFactor (void *arkode_mem, sunrealtype safety)

Specifies the safety factor to be applied to the accuracy-based estimated step.
Parameters
» arkode_mem — pointer to the ARKODE memory block.
» safety — safety factor applied to accuracy-based time step (default is 0.96).
Return values
* ARK_SUCCESS — the function exited successfully.
* ARK_MEM_NULL - arkode_mem was NULL.
* ARK_ILL_INPUT - an argument had an illegal value.

* ARK_STEPPER_UNSUPPORTED - adaptive step sizes are not supported by the current time-
stepping module.

104 Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

Note

This is only compatible with time-stepping modules that support temporal adaptivity.

Any value < 0 will imply a reset to the default value.

Added in version 6.1.0.

int ARKodeSetSmallNumEFails (void *arkode mem, int small_nef)

Specifies the threshold for “multiple” successive error failures before the etamxf parameter from ARKodeSet -
MaxEFailGrowth() is applied.

Parameters

» arkode_mem — pointer to the ARKODE memory block.

* small_nef - bound to determine ‘multiple’ for etamxf (default is 2).
Return values

» ARK_SUCCESS - the function exited successfully.

* ARK_MEM_NULL - arkode_mem was NULL.

* ARK_ILL_INPUT - an argument had an illegal value.

» ARK_STEPPER_UNSUPPORTED - adaptive step sizes are not supported by the current time-
stepping module.

Note

This is only compatible with time-stepping modules that support temporal adaptivity.

Any value < 0 will imply a reset to the default value.

Added in version 6.1.0.
int ARKodeSetStabilityFn(void *arkode_mem, ARKExpStabFn EStab, void *estab_data)

Sets the problem-dependent function to estimate a stable time step size for the explicit portion of the ODE system.
Parameters
» arkode_mem — pointer to the ARKODE memory block.
» EStab — name of user-supplied stability function.
» estab_data — pointer to user data passed to EStab every time it is called.
Return values
* ARK_SUCCESS — the function exited successfully.
* ARK_MEM_NULL - arkode_mem was NULL.
e ARK_ILL_INPUT - an argument had an illegal value.

* ARK_STEPPER_UNSUPPORTED - adaptive step sizes are not supported by the current time-
stepping module.

5.3. ARKODE User-callable functions 105



User Documentation for ARKODE, v6.2.1

Note

This is only compatible with time-stepping modules that support temporal adaptivity.

This function should return an estimate of the absolute value of the maximum stable time step for the explicit
portion of the ODE system. It is not required, since accuracy-based adaptivity may be sufficient for retaining
stability, but this can be quite useful for problems where the explicit right-hand side function f¥ (¢, y) contains
stiff terms.

Added in version 6.1.0.

The following routines are used to control algorithms that ARKODE can use to estimate the accumulated temporal
error over multiple time steps. While these may be informational for users on their applications, this functionality is
required when using multirate temporal adaptivity in MRIStep via the SUNAdaptController_MRIHTol module. For
time-stepping modules that compute both a solution and embedding, y,, and ¢, these may be combined to create a
vector-valued local temporal error estimate for the current internal step, y, — ¥,. These local errors may be accu-
mulated by ARKODE in a variety of ways, as determined by the enumerated type ARKAccumError. In each of the
cases below, the accumulation is taken over all steps since the most recent call to either ARKodeSetAccumulatedEr-
rorType () or ARKodeResetAccumulatedError (). Below the set S contains the indices of the steps since the last
call to either of the aforementioned functions. The norm is taken using the tolerance-informed error-weight vector (see
ARKodeGetErriieights()), and reltol is the user-specified relative solution tolerance.

enum ARKAccumError

The type of error accumulation that ARKODE should use.
Added in version 6.2.0.
enumerator ARK_ACCUMERROR_NONE

No accumulation should be performed

enumerator ARK_ACCUMERROR_MAX
Computes reltol max lyi — Fillwrams
1€

enumerator ARK_ACCUMERROR_SUM

Computes reltol Y ||y; — 7i|lwras
ies

enumerator ARK_ACCUMERROR_AVG

Computes Zl;‘;' > hillyi — Uillw rars, Where h; is the step size used when computing y;, and At s denotes
=

K2
the elapsed time over which S is taken.

int ARKodeSetAccumulatedErrorType (void *arkode_mem, ARKAccumError accum_type)

Sets the strategy to use for accumulating a temporal error estimate over multiple time steps. By default, ARKODE
will not accumulate any local error estimates (i.e., the default accum_type is ARK_ACCUMERROR_NONE).

A non-default error accumulation strategy can be disabled by calling ARKodeSetAccumulatedErrorType ()
with the argument ARK_ACCUMERROR_NONE.

Parameters
» arkode_mem — pointer to the ARKODE memory block.
* accum_type — accumulation strategy.
Return values
* ARK_SUCCESS — the function exited successfully.
e ARK_MEM_NULL - arkode_mem was NULL

106 Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

* ARK_STEPPER_UNSUPPORTED — temporal error estimation is not supported by the current
time-stepping module.

Added in version 6.2.0.

int ARKodeResetAccumulatedError (void *arkode_mem)

Resets the accumulated temporal error estimate, that was triggered by a previous call to ARKodeSetAccumu-
latedErrorType().

Parameters

» arkode_mem — pointer to the ARKODE memory block.
Return values

» ARK_SUCCESS - the function exited successfully.

e ARK_MEM_NULL - arkode_mem was NULL

* ARK_STEPPER_UNSUPPORTED - temporal error estimation is not supported by the current
time-stepping module.

Added in version 6.2.0.
5.3.8.3 Optional inputs for implicit stage solves

The mathematical explanation for the nonlinear solver strategies used by ARKODE, including how each of the param-
eters below is used within the code, is provided in §2.15.1.

Optional input Function name Default
Specify that the implicit RHS is linear ARKodeSetLinear () SUN-
FALSE
Specify that the implicit RHS nonlinear ARKodeSetNonlinear () SUNTRUE
Specify that the implicit RHS is autonomous ARKodeSetAutonomous () SUN-
FALSE
Implicit predictor method ARKodeSetPredictorMethod () 0
User-provided implicit stage predictor ARKodeSetStagePredictFn() NULL
RHS function for nonlinear system evaluations ARKodeSetN1sRhsFn() NULL
Maximum number of nonlinear iterations ARKodeSetMaxNonlinIters() 3
Coeflicient in the nonlinear convergence test ARKodeSetNonlinConvCoef () 0.1
Nonlinear convergence rate constant ARKodeSetNonlinCRDown () 0.3
Nonlinear residual divergence ratio ARKodeSetNonlinRDiv() 2.3
Maximum number of convergence failures ARKodeSetMaxConvFails() 10
Specify if the implicit RHS is deduced after a nonlinear solve =~ ARKodeSetDeduceImplic- SUN-
1tRhs() FALSE

int ARKodeSetLinear (void *arkode_mem, int timedepend)

Specifies that the implicit portion of the problem is linear.
Parameters
» arkode_mem — pointer to the ARKODE memory block.

+ timedepend — flag denoting whether the Jacobian of f(¢,) is time-dependent (1) or not
(0).

Return values

5.3. ARKODE User-callable functions 107



User Documentation for ARKODE, v6.2.1

ARK_SUCCESS - the function exited successfully.
* ARK_MEM_NULL - arkode_mem was NULL.
e ARK_ILL_INPUT - an argument had an illegal value.

* ARK_STEPPER_UNSUPPORTED - implicit solvers are not supported by the current time-
stepping module.

Note

This is only compatible with time-stepping modules that support implicit algebraic solvers.

Tightens the linear solver tolerances and takes only a single Newton iteration. Calls ARKodeSetDeltaGam-
malfax () to enforce Jacobian recomputation when the step size ratio changes by more than 100 times the
unit roundoff (since nonlinear convergence is not tested). Only applicable when used in combination with
the modified or inexact Newton iteration (not the fixed-point solver).

When fI(t,y) is time-dependent, all linear solver structures (Jacobian, preconditioner) will be updated pre-
ceding each implicit stage. Thus one must balance the relative costs of such recomputation against the benefits
of requiring only a single Newton linear solve.

Added in version 6.1.0.

int ARKodeSetNonlinear (void *arkode_mem)

Specifies that the implicit portion of the problem is nonlinear.

Parameters

» arkode_mem — pointer to the ARKODE memory block.
Return values

» ARK_SUCCESS - the function exited successfully.

* ARK_MEM_NULL - arkode_mem was NULL.

e ARK_ILL_INPUT - an argument had an illegal value.

ARK_STEPPER_UNSUPPORTED — implicit solvers are not supported by the current time-
stepping module.

Note

This is only compatible with time-stepping modules that support implicit algebraic solvers.

This is the default behavior of ARKODE, so the function is primarily useful to undo a previous call to
ARKodeSetLinear (). Calls ARKodeSetDel taGammaMax () to reset the step size ratio threshold to the de-
fault value.

Added in version 6.1.0.

int ARKodeSetAutonomous (void *arkode_mem, sunbooleantype autonomous)

Specifies that the implicit portion of the problem is autonomous i.e., does not explicitly depend on time.

When using an implicit or InEx method with the trivial predictor, this option enables reusing the implicit right-
hand side evaluation at the predicted state across stage solves within a step. This reuse reduces the total number
of implicit RHS function evaluations.

Parameters

108

Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

» arkode_mem — pointer to the ARKODE memory block.

+ autonomous — flag denoting if the implicit RHS function, f!(,y), is autonomous
(SUNTRUE) or non-autonomous (SUNFALSE).

Return values
» ARK_SUCCESS - the function exited successfully.
* ARK_MEM_NULL - arkode_mem was NULL.
e ARK_ILL_INPUT - an argument had an illegal value.

* ARK_STEPPER_UNSUPPORTED - implicit solvers are not supported by the current time-
stepping module.

Warning

Results may differ when enabling both ARKodeSetAutonomous () and ARKodeSetDeduceImplicitRhs()
with a stiffly accurate implicit method and using the trivial predictor. The differences are due to reusing the
deduced implicit right-hand side (RHS) value in the initial nonlinear residual computation rather than eval-
uating the implicit RHS function. The significance of the difference will depend on how well the deduced
RHS approximates the RHS evaluated at the trivial predictor. This behavior can be observed in examples/
arkode/C_serial/ark_brusselator.c by comparing the outputs with ARKodeSetAutonomous () en-
abled/disabled.

Similarly programs that assume the nonlinear residual will always call the implicit RHS function will need
to be updated to account for the RHS value reuse when using ARKodeSetAutonomous (). For exam-
ple, examples/arkode/C_serial/ark_KrylovDemo_prec.c assumes that the nonlinear residual will be
called and will evaluate the implicit RHS function before calling the preconditioner setup function. Based on
this assumption, this example code saves some computations in the RHS evaluation for reuse in the precondi-
tioner setup. However, when ARKodeSetAutonomous () is enabled, the call to the nonlinear residual before
the preconditioner setup reuses a saved RHS evaluation and the saved data is actually from an earlier RHS
evaluation that is not consistent with the state and RHS values passed to the preconditioner setup function.
For this example, the code should not save data in the RHS evaluation but instead evaluate the necessary
quantities within the preconditioner setup function using the input values.

Added in version 6.1.0.

int ARKodeSetPredictorMethod (void *arkode _mem, int method)
Specifies the method from §2.15.5 to use for predicting implicit solutions.

Parameters
» arkode_mem — pointer to the ARKODE memory block.

* method — method choice (0 < method < 4):

0 is the trivial predictor,

1 is the maximum order (dense output) predictor,

2 is the variable order predictor, that decreases the polynomial degree for more distant RK
stages,

3 is the cutoff order predictor, that uses the maximum order for early RK stages, and a
first-order predictor for distant RK stages,

Return values

* ARK_SUCCESS — the function exited successfully.

5.3. ARKODE User-callable functions 109



User Documentation for ARKODE, v6.2.1

e ARK_MEM_NULL - arkode_mem was NULL.
e ARK_ILL_INPUT - an argument had an illegal value.

e ARK_STEPPER_UNSUPPORTED - implicit solvers are not supported by the current time-
stepping module.

Note

This is only compatible with time-stepping modules that support implicit algebraic solvers.

The default value is 0. If method is set to an undefined value, this default predictor will be used.

Added in version 6.1.0.
int ARKodeSetStagePredictFn(void *arkode_mem, ARKStagePredictFn PredictStage)

Sets the user-supplied function to update the implicit stage predictor prior to execution of the nonlinear or linear
solver algorithms that compute the implicit stage solution.

Parameters
» arkode_mem — pointer to the ARKODE memory block.

» PredictStage — name of user-supplied predictor function. If NULL, then any previously-
provided stage prediction function will be disabled.

Return values
* ARK_SUCCESS — the function exited successfully.
e ARK_MEM_NULL - arkode_mem was NULL.

* ARK_STEPPER_UNSUPPORTED - implicit solvers are not supported by the current time-
stepping module.

Note

This is only compatible with time-stepping modules that support implicit algebraic solvers.

See §5.4.6 for more information on this user-supplied routine.

Added in version 6.1.0.
int ARKodeSetN1sRhsFn (void *arkode_mem, ARKRhsFn nls_fi)

Specifies an alternative implicit right-hand side function for evaluating f (¢, 3/) within nonlinear system function
evaluations (2.39) - (2.41).

Parameters
 arkode_mem — pointer to the ARKODE memory block.

* nls_fi — the alternative C function for computing the right-hand side function f(¢,y) in
the ODE.

Return values
» ARK_SUCCESS - the function exited successfully.
e ARK_MEM_NULL - arkode_mem was NULL.

110 Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

* ARK_STEPPER_UNSUPPORTED - implicit solvers are not supported by the current time-
stepping module.

Note

This is only compatible with time-stepping modules that support implicit algebraic solvers.

The default is to use the implicit right-hand side function provided to the stepper constructor in nonlinear
system functions. If the input implicit right-hand side function is NULL, the default is used.

When using a non-default nonlinear solver, this function must be called affer ARKodeSetNonlinear-
Solver().

Added in version 6.1.0.

int ARKodeSetMaxNonlinIters (void *arkode mem, int maxcor)

Specifies the maximum number of nonlinear solver iterations permitted per implicit stage solve within each time
step.

Parameters

» arkode_mem — pointer to the ARKODE memory block.

» maxcor — maximum allowed solver iterations per stage (> 0).
Return values

» ARK_SUCCESS - the function exited successfully.

o ARK_MEM_NULL - arkode_mem was NULL.

e ARK_ILL_INPUT — an argument had an illegal value or if the SUNNONLINSOL module is
NULL.

* ARK_NLS_OP_ERR — the SUNNONLINSOL object returned a failure flag.

e ARK_STEPPER_UNSUPPORTED - implicit solvers are not supported by the current time-
stepping module.

Note

This is only compatible with time-stepping modules that support implicit algebraic solvers.

The default value is 3; set maxcor < 0 to specify this default.

Added in version 6.1.0.

int ARKodeSetNonlinConvCoef (void *arkode_mem, sunrealtype nlscoef)

Specifies the safety factor € used within the nonlinear solver convergence test (2.54).
Parameters
» arkode_mem — pointer to the ARKODE memory block.
* nlscoef — coefficient in nonlinear solver convergence test (> 0.0).
Return values
* ARK_SUCCESS — the function exited successfully.
e ARK_MEM_NULL - arkode_mem was NULL.

5.3. ARKODE User-callable functions 111



User Documentation for ARKODE, v6.2.1

e ARK_ILL_INPUT - an argument had an illegal value.

e ARK_STEPPER_UNSUPPORTED - implicit solvers are not supported by the current time-
stepping module.

Note

This is only compatible with time-stepping modules that support implicit algebraic solvers.

The default value is 0.1; set nlscoef < 0 to specify this default.

Added in version 6.1.0.

int ARKodeSetNonlinCRDown (void *arkode_mem, sunrealtype crdown)
Specifies the constant ¢, used in estimating the nonlinear solver convergence rate (2.53).

Parameters

» arkode_mem — pointer to the ARKODE memory block.

» crdown — nonlinear convergence rate estimation constant (default is 0.3).
Return values

* ARK_SUCCESS — the function exited successfully.

e ARK_MEM_NULL - arkode_mem was NULL.

e ARK_ILL_INPUT - an argument had an illegal value.

e ARK_STEPPER_UNSUPPORTED - implicit solvers are not supported by the current time-
stepping module.

Note

This is only compatible with time-stepping modules that support implicit algebraic solvers.

Any non-positive parameter will imply a reset to the default value.

Added in version 6.1.0.

int ARKodeSetNonlinRDiv (void *arkode_mem, sunrealtype rdiv)

Specifies the nonlinear correction threshold r4;,, from (2.55), beyond which the iteration will be declared diver-
gent.

Parameters

» arkode_mem — pointer to the ARKODE memory block.

» rdiv - tolerance on nonlinear correction size ratio to declare divergence (default is 2.3).
Return values

» ARK_SUCCESS - the function exited successfully.

* ARK_MEM_NULL - arkode_mem was NULL.

* ARK_ILL_INPUT - an argument had an illegal value.

e ARK_STEPPER_UNSUPPORTED - implicit solvers are not supported by the current time-
stepping module.

112 Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

Note

This is only compatible with time-stepping modules that support implicit algebraic solvers.

Any non-positive parameter will imply a reset to the default value.

Added in version 6.1.0.

int ARKodeSetMaxConvFails (void *arkode_mem, int maxncf)

Specifies the maximum number of nonlinear solver convergence failures permitted during one step, maZ .y
from §2.15.3.1, before ARKODE will return with an error.

Parameters

» arkode_mem — pointer to the ARKODE memory block.

 maxncf — maximum allowed nonlinear solver convergence failures per step (> 0).
Return values

» ARK_SUCCESS - the function exited successfully.

* ARK_MEM_NULL - arkode_mem was NULL.

e ARK_ILL_INPUT - an argument had an illegal value.

* ARK_STEPPER_UNSUPPORTED - implicit solvers are not supported by the current time-
stepping module.

Note

This is only compatible with time-stepping modules that support implicit algebraic solvers.
The default value is 10; set maxncf < 0 to specify this default.

Upon each convergence failure, ARKODE will first call the Jacobian setup routine and try again (if a Newton
method is used). If a convergence failure still occurs, the time step size is reduced by the factor efacf (set
within ARKodeSetMaxCFailGrowth()).

Added in version 6.1.0.
int ARKodeSetDeduceImplicitRhs(void *arkode_mem, sunbooleantype deduce)
Specifies if implicit stage derivatives are deduced without evaluating f. See §2.15.1 for more details.
Parameters
» arkode_mem — pointer to the ARKODE memory block.

+ deduce — if SUNFALSE (default), the stage derivative is obtained by evaluating f! with the
stage solution returned from the nonlinear solver. If SUNTRUE, the stage derivative is deduced
without an additional evaluation of f7.

Return values
» ARK_SUCCESS - the function exited successfully.
* ARK_MEM_NULL - arkode_mem was NULL.

o ARK_STEPPER_UNSUPPORTED - implicit solvers are not supported by the current time-
stepping module.

5.3. ARKODE User-callable functions 113



User Documentation for ARKODE, v6.2.1

Note

This is only compatible with time-stepping modules that support implicit algebraic solvers.
Added in version 6.1.0.

5.3.8.4 Linear solver interface optional input functions

The mathematical explanation of the linear solver methods available to ARKODE is provided in §2.15.2. We group
the user-callable routines into four categories: general routines concerning the update frequency for matrices and/or
preconditioners, optional inputs for matrix-based linear solvers, optional inputs for matrix-free linear solvers, and op-
tional inputs for iterative linear solvers. We note that the matrix-based and matrix-free groups are mutually exclusive,
whereas the “iterative” tag can apply to either case.

Optional inputs for the ARKLS linear solver interface

As discussed in §2.15.2.3, ARKODE strives to reuse matrix and preconditioner data for as many solves as possible
to amortize the high costs of matrix construction and factorization. To that end, ARKODE provides user-callable
routines to modify this behavior. Recall that the Newton system matrices that arise within an implicit stage solve are

- . C . . . . _0f1(t,2)
A(t,z) = M(t) — vJ(t, z), where the implicit right-hand side function has Jacobian matrix .J(t, z) = “52*.
The matrix or preconditioner for .A can only be updated within a call to the linear solver “setup” routine. In general, the
frequency with which the linear solver setup routine is called may be controlled with the msbp argument to ARKode-

SetLSetupFrequency (). When this occurs, the validity of A for successive time steps intimately depends on whether
the corresponding -y and J inputs remain valid.

At each call to the linear solver setup routine the decision to update .4 with a new value of v, and to reuse or reevaluate
Jacobian information, depends on several factors including:

* the success or failure of previous solve attempts,

* the success or failure of the previous time step attempts,

* the change in 7 from the value used when constructing .4, and

* the number of steps since Jacobian information was last evaluated.

Jacobian information is considered out-of-date when msbj or more steps have been completed since the last update,
in which case it will be recomputed during the next linear solver setup call. The value of msbj is controlled with the
msbj argument to ARKodeSetJacEvalFrequency().

For linear-solvers with user-supplied preconditioning the above factors are used to determine whether to recommend
updating the Jacobian information in the preconditioner (i.e., whether to set jok to SUNFALSE in calling the user-supplied
ARKLsPrecSetupFn). For matrix-based linear solvers these factors determine whether the matrix J(¢,y) = W
should be updated (either with an internal finite difference approximation or a call to the user-supplied ARKLsJacFn);
if not then the previous value is reused and the system matrix A(t,y) ~ M(t) — vJ(t,y) is recomputed using the
current v value.

Table 5.1: Optional inputs for the ARKLS linear solver interface

Optional input Function name Default
Max change in step signaling new J ARKodeSetDel taGammaMax () 0.2
Linear solver setup frequency ARKodeSetLSetupFrequency() 20

Jacobian / preconditioner update frequency ARKodeSetJacEvalFrequency() 51

114 Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

int ARKodeSetDeltaGammaMax (void *arkode_mem, sunrealtype dgmax)

Specifies a scaled step size ratio tolerance, A%, 4, from §2.15.2.3, beyond which the linear solver setup routine
will be signaled.

Parameters
» arkode_mem — pointer to the ARKODE memory block.

* dgmax — tolerance on step size ratio change before calling linear solver setup routine (default
is 0.2).

Return values
» ARK_SUCCESS - the function exited successfully.
e ARK_MEM_NULL - arkode_mem was NULL.
e ARK_ILL_INPUT - an argument had an illegal value.

e ARK_STEPPER_UNSUPPORTED - implicit solvers are not supported by the current time-
stepping module.

Note

This is only compatible with time-stepping modules that support implicit algebraic solvers.

Any non-positive parameter will imply a reset to the default value.

Added in version 6.1.0.

int ARKodeSetLSetupFrequency (void *arkode_mem, int msbp)
Specifies the frequency of calls to the linear solver setup routine, msbp from §2.15.2.3.

Parameters
» arkode_mem — pointer to the ARKODE memory block.
» msbp — the linear solver setup frequency.
Return values
* ARK_SUCCESS — the function exited successfully.
* ARK_MEM_NULL - arkode_mem was NULL.

e ARK_STEPPER_UNSUPPORTED — implicit solvers are not supported by the current time-
stepping module.

Note

This is only compatible with time-stepping modules that support implicit algebraic solvers.

Positive values of msbp specify the linear solver setup frequency. For example, an input of 1 means the setup
function will be called every time step while an input of 2 means it will be called called every other time step.
If msbp is 0, the default value of 20 will be used. A negative value forces a linear solver step at each implicit
stage.

Added in version 6.1.0.

5.3. ARKODE User-callable functions 115



User Documentation for ARKODE, v6.2.1

int ARKodeSetJacEvalFrequency (void *arkode_mem, long int msbj)

Specifies the number of steps after which the Jacobian information is considered out-of-date, msbj from
§2.15.2.3.

Parameters

» arkode_mem — pointer to the ARKODE memory block.

» msbj — the Jacobian re-computation or preconditioner update frequency.
Return values

* ARKLS_SUCCESS - the function exited successfully.

* ARKLS_MEM_NULL - arkode_mem was NULL.

* ARKLS_LMEM_NULL — the linear solver memory was NULL.

* ARK_STEPPER_UNSUPPORTED - implicit solvers are not supported by the current time-
stepping module.

Note

This is only compatible with time-stepping modules that support implicit algebraic solvers.

If nstlj is the step number at which the Jacobian information was lasted updated and nst is the current step
number, nst - nstlj >= msbj indicates that the Jacobian information will be updated during the next
linear solver setup call.

As the Jacobian update frequency is only checked within calls to the linear solver setup routine, Jacobian
information may be more than msbj steps old when updated depending on when a linear solver setup call
occurs. See §2.15.2.3 for more information on when linear solver setups are performed.

Passing a value msbj < 0 indicates to use the default value of 51.

This function must be called after the ARKLS system solver interface has been initialized through a call to
ARKodeSetLinearSolver().

Added in version 6.1.0.

Optional inputs for matrix-based SUNLinearSolver modules

Optional input Function name Default
Jacobian function ARKodeSetJacFn() DQ
Linear system function ARKodeSetLinSysFn() internal
Mass matrix function ARKodeSetMassFn () none

Enable or disable linear solution scaling ARKodeSetLinearSolutionScaling() on

When using matrix-based linear solver modules, the ARKLS solver interface needs a function to compute an approxi-
mation to the Jacobian matrix J(t,y) or the linear system A(t,y) = M (t) — vJ (¢, y).

For J(t,y), the ARKLS interface is packaged with a routine that can approximate J if the user has selected either the
SUNMATRIX_DENSE or SUNMATRIX_BAND objects. Alternatively, the user can supply a custom Jacobian function
of type ARKLsJacFn () —this is required when the user selects other matrix formats. To specify a user-supplied Jacobian
function, ARKODE provides the function ARKodeSetJacFn().

116 Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

Alternatively, a function of type ARKLSLinSysFn () can be provided to evaluate the matrix .A(¢, y). By default, ARKLS
uses an internal linear system function leveraging the SUNMATRIX API to form the matrix .A(¢, y) by combining the
matrices M (t) and J (¢, y). To specify a user-supplied linear system function instead, ARKODE provides the function
ARKodeSetLinSysFn().

If the ODE system involves a non-identity mass matrix, M # I, matrix-based linear solver modules require a function
to compute an approximation to the mass matrix M (¢). There is no default difference quotient approximation (for any
matrix type), so this routine must be supplied by the user. This function must be of type ARKLsMassFn (), and should
be set using the function ARKodeSetMassFn().

In either case (J(t,y) versus A(t, y) is supplied) the matrix information will be updated infrequently to reduce matrix
construction and, with direct solvers, factorization costs. As a result the value of v may not be current and a scaling
factor is applied to the solution of the linear system to account for the lagged value of . See §10.2.1 for more details.
The function ARKodeSetLinearSolutionScaling () can be used to disable this scaling when necessary, e.g., when
providing a custom linear solver that updates the matrix using the current ~y as part of the solve.

The ARKLS interface passes the user data pointer to the Jacobian, linear system, and mass matrix functions. This
allows the user to create an arbitrary structure with relevant problem data and access it during the execution of the
user-supplied Jacobian, linear system or mass matrix functions, without using global data in the program. The user
data pointer may be specified through ARKodeSetUserData().

int ARKodeSetJacFn(void *arkode_mem, ARKLsJacFn jac)

Specifies the Jacobian approximation routine to be used for the matrix-based solver with the ARKLS interface.
Parameters
» arkode_mem — pointer to the ARKODE memory block.
* jac — name of user-supplied Jacobian approximation function.
Return values
* ARKLS_SUCCESS - the function exited successfully.
e ARKLS_MEM_NULL — arkode_mem was NULL.
e ARKLS_LMEM_NULL - the linear solver memory was NULL.

* ARK_STEPPER_UNSUPPORTED - implicit solvers are not supported by the current time-
stepping module.

Note

This is only compatible with time-stepping modules that support implicit algebraic solvers.

This routine must be called after the ARKLS linear solver interface has been initialized through a call to
ARKodeSetLinearSolver().

By default, ARKLS uses an internal difference quotient function for the SUNMATRIX DENSE and SUN-
MATRIX_BAND modules. If NULL is passed in for jac, this default is used. An error will occur if no jac is
supplied when using other matrix types.

The function type ARKLsJacFn() is described in §5.4.

Added in version 6.1.0.
int ARKodeSetLinSysFn(void *arkode_mem, ARKLsLinSysFn linsys)

Specifies the linear system approximation routine to be used for the matrix-based solver with the ARKLS inter-
face.

Parameters

5.3. ARKODE User-callable functions 117



User Documentation for ARKODE, v6.2.1

» arkode_mem — pointer to the ARKODE memory block.

* linsys — name of user-supplied linear system approximation function.
Return values

* ARKLS_SUCCESS - the function exited successfully.

* ARKLS_MEM_NULL - arkode_mem was NULL.

e ARKLS_LMEM_NULL - the linear solver memory was NULL.

e ARK_STEPPER_UNSUPPORTED - implicit solvers are not supported by the current time-
stepping module.

Note

This is only compatible with time-stepping modules that support implicit algebraic solvers.

This routine must be called after the ARKLS linear solver interface has been initialized through a call to
ARKodeSetLinearSolver().

By default, ARKLS uses an internal linear system function that leverages the SUNMATRIX API to form the
system M — ~J. If NULL is passed in for linsys, this default is used.

The function type ARKLsLinSysFn() is described in §5.4.

Added in version 6.1.0.

int ARKodeSetMassFn (void *arkode_mem, ARKLsMassFn mass)

Specifies the mass matrix approximation routine to be used for the matrix-based solver with the ARKLS interface.

Parameters

» arkode_mem — pointer to the ARKODE memory block.

* mass — name of user-supplied mass matrix approximation function.
Return values

* ARKLS_SUCCESS - the function exited successfully.

* ARKLS_MEM_NULL - arkode_mem was NULL.

e ARKLS_MASSMEM_NULL - the mass matrix solver memory was NULL.

e ARKLS_ILL_INPUT - an argument had an illegal value.

* ARK_STEPPER_UNSUPPORTED — non-identity mass matrices are not supported by the current
time-stepping module.

Note

This is only compatible with time-stepping modules that support non-identity mass matrices.

This routine must be called after the ARKLS mass matrix solver interface has been initialized through a call
to ARKodeSetMassLinearSolver().

Since there is no default difference quotient function for mass matrices, mass must be non-NULL.

The function type ARKLsMassFn() is described in §5.4.

Added in version 6.1.0.

118

Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

int ARKodeSetLinearSolutionScaling(void *arkode_mem, sunbooleantype onoff)

Enables or disables scaling the linear system solution to account for a change in +y in the linear system. For more
details see §10.2.1.

Parameters

» arkode_mem — pointer to the ARKODE memory block.

» onoff - flag to enable (SUNTRUE) or disable (SUNFALSE) scaling.
Return values

* ARKLS_SUCCESS - the function exited successfully.

e ARKLS_MEM_NULL - arkode_mem was NULL.

* ARKLS_ILL_INPUT - the attached linear solver is not matrix-based.

* ARK_STEPPER_UNSUPPORTED - implicit solvers are not supported by the current time-
stepping module.

Note

This is only compatible with time-stepping modules that support implicit algebraic solvers.

Linear solution scaling is enabled by default when a matrix-based linear solver is attached.

Added in version 6.1.0.

Optional inputs for matrix-free SUNLinearSolver modules

Optional input Function name Default
Jv functions (jtimes and jtsetup) ARKodeSetJacTimes () DQ, none
Jv DQ rhs function (jtimesRhsFn) ARKodeSetJacTimesRhsFn() fi

Mw functions (mtimes and mtsetup) ARKodeSetMassTimes () none, none

As described in §2.15.2, when solving the Newton linear systems with matrix-free methods, the ARKLS interface
requires a jtimes function to compute an approximation to the product between the Jacobian matrix J (¢, y) and a vector
v. The user can supply a custom Jacobian-times-vector approximation function, or use the default internal difference
quotient function that comes with the ARKLS interface.

A user-defined Jacobian-vector function must be of type ARKLsJacTimesVecFn and can be specified through a call to
ARKodeSetJacTimes () (see §5.4 for specification details). As with the user-supplied preconditioner functions, the
evaluation and processing of any Jacobian-related data needed by the user’s Jacobian-times-vector function is done in
the optional user-supplied function of type ARKLsJacTimesSetupFn (see §5.4 for specification details). As with the
preconditioner functions, a pointer to the user-defined data structure, user_data, specified through ARKodeSetUser-
Data() (or a NULL pointer otherwise) is passed to the Jacobian-times-vector setup and product functions each time
they are called.

int ARKodeSetJacTimes (void *arkode_mem, ARKLsJacTimesSetupFn jtsetup, ARKLsJacTimesVecFn jtimes)

Specifies the Jacobian-times-vector setup and product functions.
Parameters

» arkode_mem — pointer to the ARKODE memory block.

5.3. ARKODE User-callable functions 119



User Documentation for ARKODE, v6.2.1

* jtsetup — user-defined Jacobian-vector setup function. Pass NULL if no setup is necessary.
* jtimes — user-defined Jacobian-vector product function.
Return values
* ARKLS_SUCCESS - the function exited successfully.
* ARKLS_MEM_NULL - arkode_mem was NULL.
e ARKLS_LMEM_NULL - the linear solver memory was NULL.
e ARKLS_ILL_INPUT - an input had an illegal value.

* ARKLS_SUNLS_FAIL — an error occurred when setting up the Jacobian-vector product in the
SUNLinearSolver object used by the ARKLS interface.

e ARK_STEPPER_UNSUPPORTED - implicit solvers are not supported by the current time-
stepping module.

Note

This is only compatible with time-stepping modules that support implicit algebraic solvers.

The default is to use an internal finite difference quotient for jtimes and to leave out jtsetup. If NULL is passed
to jtimes, these defaults are used. A user may specify non-NULL jtimes and NULL jtsetup inputs.

This function must be called after the ARKLS system solver interface has been initialized through a call to
ARKodeSetLinearSolver().

The function types ARKLsJacTimesSetupFn and ARKLsJacTimesVecFn are described in §5.4.

Added in version 6.1.0.

When using the internal difference quotient the user may optionally supply an alternative implicit right-hand side func-
tion for use in the Jacobian-vector product approximation by calling ARKodeSetJacTimesRhsFn(). The alternative
implicit right-hand side function should compute a suitable (and differentiable) approximation to the f! function pro-
vided to *StepCreate. For example, as done in [37], the alternative function may use lagged values when evaluating
a nonlinearity in f! to avoid differencing a potentially non-differentiable factor. We note that in many instances this
same f! routine would also have been desirable for the nonlinear solver, in which case the user should specify this
through calls to both ARKodeSetJacTimesRhsFn() and ARKodeSetNI1sRhsFn().

int ARKodeSetJacTimesRhsFn (void *arkode_mem, ARKRAsFn jtimesRhsFn)

Specifies an alternative implicit right-hand side function for use in the internal Jacobian-vector product difference
quotient approximation.

Parameters
» arkode_mem — pointer to the ARKODE memory block.

* jtimesRhsFn — the name of the C function (of type ARKRhsFn()) defining the alternative
right-hand side function.

Return values
* ARKLS_SUCCESS - the function exited successfully.
* ARKLS_MEM_NULL - arkode_mem was NULL.
e ARKLS_LMEM_NULL - the linear solver memory was NULL.
e ARKLS_ILL_INPUT - an input had an illegal value.

120 Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

* ARK_STEPPER_UNSUPPORTED - implicit solvers are not supported by the current time-
stepping module.

Note

This is only compatible with time-stepping modules that support implicit algebraic solvers.

The default is to use the implicit right-hand side function provided to *StepCreate in the internal difference

quotient. If the input implicit right-hand side function is NULL, the default is used.

This function must be called after the ARKLS system solver interface has been initialized through a call to

ARKodeSetLinearSolver().

Added in version 6.1.0.

Similarly, if a problem involves a non-identity mass matrix, M # I, then matrix-free solvers require a mtimes function
to compute an approximation to the product between the mass matrix M () and a vector v. This function must be user-
supplied since there is no default value, it must be of type ARKLsMassTimesVecFn(), and can be specified through a
call to the ARKodeSetMassTimes () routine. Similarly to the user-supplied preconditioner functions, any evaluation
and processing of any mass matrix-related data needed by the user’s mass-matrix-times-vector function may be done
in an optional user-supplied function of type ARKLsMassTimesSetupFn (see §5.4 for specification details).

int ARKodeSetMassTimes (void *arkode_mem, ARKLsMassTimesSetupFn mtsetup, ARKLsMassTimesVecFn

mtimes, void *mtimes_data)
Specifies the mass matrix-times-vector setup and product functions.
Parameters
» arkode_mem — pointer to the ARKODE memory block.

* mtsetup — user-defined mass matrix-vector setup function. Pass NULL if no setup is neces-
sary.

» mtimes — user-defined mass matrix-vector product function.

* mtimes_data — a pointer to user data, that will be supplied to both the mtsetup and mtimes
functions.

Return values
* ARKLS_SUCCESS - the function exited successfully.
e ARKLS_MEM_NULL — arkode_mem was NULL.

ARKLS_MASSMEM_NULL - the mass matrix solver memory was NULL.

ARKLS_TLL_INPUT — an input had an illegal value.

ARKLS_SUNLS_FAIL — an error occurred when setting up the mass-matrix-vector product in
the SUNLinearSolver object used by the ARKLS interface.

ARK_STEPPER_UNSUPPORTED — non-identity mass matrices are not supported by the current
time-stepping module.

Note

This is only compatible with time-stepping modules that support non-identity mass matrices.

5.3.

ARKODE User-callable functions

121



User Documentation for ARKODE, v6.2.1

There is no default finite difference quotient for mtimes, so if using the ARKLS mass matrix solver interface
with NULL-valued SUNMATRIX input M, and this routine is called with NULL-valued mtimes, an error
will occur. A user may specify NULL for mtsetup.

This function must be called after the ARKLS mass matrix solver interface has been initialized through a
call to ARKodeSetMassLinearSolver().
The function types ARKLsMassTimesSetupFn and ARKLsMassTimesVecFn are described in §5.4.

Added in version 6.1.0.

Optional inputs for iterative SUNLinearSolver modules

Optional input Function name Default
Newton preconditioning functions ARKodeSetPreconditioner() NULL, NULL
Mass matrix preconditioning functions ARKodeSetMassPreconditioner() NULL, NULL
Newton linear and nonlinear tolerance ratio ARKodeSetEpsLin() 0.05

Mass matrix linear and nonlinear tolerance ratio ARKodeSetMassEpsLin() 0.05

Newton linear solve tolerance conversion factor ARKodeSetLSNormFactor () vector length
Mass matrix linear solve tolerance conversion factor ARKodeSetMassLSNormFactor () vector length

As described in §2.15.2, when using an iterative linear solver the user may supply a preconditioning operator to aid
in solution of the system. This operator consists of two user-supplied functions, psetup and psolve, that are supplied
to ARKODE using either the function ARKodeSetPreconditioner() (for preconditioning the Newton system), or
the function ARKodeSetMassPreconditioner () (for preconditioning the mass matrix system). The psetup function
supplied to these routines should handle evaluation and preprocessing of any Jacobian or mass-matrix data needed by
the user’s preconditioner solve function, psolve. The user data pointer received through ARKodeSetUserData() (or a
pointer to NULL if user data was not specified) is passed to the psetup and psolve functions. This allows the user to create
an arbitrary structure with relevant problem data and access it during the execution of the user-supplied preconditioner
functions without using global data in the program. If preconditioning is supplied for both the Newton and mass matrix
linear systems, it is expected that the user will supply different psetup and psolve function for each.

Also, as described in §2.15.3.2, the ARKLS interface requires that iterative linear solvers stop when the norm of the
preconditioned residual satisfies

Ir|| < £
10

where the default ¢;, = 0.05 may be modified by the user through the ARKodeSetEpsLin() function.

int ARKodeSetPreconditioner (void *arkode_mem, ARKLsPrecSetupFn psetup, ARKLsPrecSolveFn psolve)

Specifies the user-supplied preconditioner setup and solve functions.

Parameters
» arkode_mem — pointer to the ARKODE memory block.
* psetup — user defined preconditioner setup function. Pass NULL if no setup is needed.
* psolve — user-defined preconditioner solve function.

Return values
* ARKLS_SUCCESS - the function exited successfully.
* ARKLS_MEM_NULL - arkode_mem was NULL.

122 Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

ARKLS_LMEM_NULL - the linear solver memory was NULL.
e ARKLS_ILL_INPUT - an input had an illegal value.

e ARKLS_SUNLS_FAIL — an error occurred when setting up preconditioning in the SUNLin-
earSolver object used by the ARKLS interface.

* ARK_STEPPER_UNSUPPORTED - implicit solvers are not supported by the current time-
stepping module.

Note

This is only compatible with time-stepping modules that support implicit algebraic solvers.
The default is NULL for both arguments (i.e., no preconditioning).

This function must be called after the ARKLS system solver interface has been initialized through a call to
ARKodeSetLinearSolver().

Both of the function types ARKLsPrecSetupFn() and ARKLsPrecSolveFn() are described in §5.4.

Added in version 6.1.0.

int ARKodeSetMassPreconditioner (void *arkode_mem, ARKLsMassPrecSetupFn psetup,
ARKLsMassPrecSolveFn psolve)

Specifies the mass matrix preconditioner setup and solve functions.

Parameters
» arkode_mem — pointer to the ARKODE memory block.
* psetup — user defined preconditioner setup function. Pass NULL if no setup is to be done.
* psolve — user-defined preconditioner solve function.

Return values
* ARKLS_SUCCESS - the function exited successfully.
* ARKLS_MEM_NULL - arkode_mem was NULL.
e ARKLS_LMEM_NULL - the linear solver memory was NULL.
e ARKLS_ILL_INPUT - an input had an illegal value.

e ARKLS_SUNLS_FAIL — an error occurred when setting up preconditioning in the SUNLin-
earSolver object used by the ARKLS interface.

* ARK_STEPPER_UNSUPPORTED — non-identity mass matrices are not supported by the current
time-stepping module.

Note

This is only compatible with time-stepping modules that support non-identity mass matrices.

This function must be called after the ARKLS mass matrix solver interface has been initialized through a
call to ARKodeSetMassLinearSolver().

The default is NULL for both arguments (i.e. no preconditioning).

Both of the function types ARKLsMassPrecSetupFn() and ARKLsMassPrecSolveFn() are described in
§5.4.

5.3. ARKODE User-callable functions 123



User Documentation for ARKODE, v6.2.1

Added in version 6.1.0.

int ARKodeSetEpsLin(void *arkode_mem, sunrealtype eplifac)

Specifies the factor €7, by which the tolerance on the nonlinear iteration is multiplied to get a tolerance on the
linear iteration.

Parameters
» arkode_mem — pointer to the ARKODE memory block.
» eplifac - linear convergence safety factor.
Return values
* ARKLS_SUCCESS - the function exited successfully.
* ARKLS_MEM_NULL - arkode_mem was NULL.
e ARKLS_LMEM_NULL - the linear solver memory was NULL.
* ARKLS_ILL_INPUT - an input had an illegal value.

* ARK_STEPPER_UNSUPPORTED - implicit solvers are not supported by the current time-
stepping module.

Note

This is only compatible with time-stepping modules that support implicit algebraic solvers.
Passing a value eplifac < 0 indicates to use the default value of 0.05.

This function must be called after the ARKLS system solver interface has been initialized through a call to
ARKodeSetLinearSolver().

Added in version 6.1.0.

int ARKodeSetMassEpsLin(void *arkode_mem, sunrealtype eplifac)

Specifies the factor by which the tolerance on the nonlinear iteration is multiplied to get a tolerance on the mass
matrix linear iteration.

Parameters
» arkode_mem — pointer to the ARKODE memory block.
» eplifac - linear convergence safety factor.
Return values
* ARKLS_SUCCESS - the function exited successfully.
e ARKLS_MEM_NULL - arkode_mem was NULL.
o ARKLS_MASSMEM_NULL - the mass matrix solver memory was NULL.
e ARKLS_ILL_INPUT - an input had an illegal value.

ARK_STEPPER_UNSUPPORTED — non-identity mass matrices are not supported by the current
time-stepping module.

Note

This is only compatible with time-stepping modules that support non-identity mass matrices.

124 Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

This function must be called after the ARKLS mass matrix solver interface has been initialized through a
call to ARKodeSetMassLinearSolver().

Passing a value eplifac < 0 indicates to use the default value of 0.05.

Added in version 6.1.0.

Since iterative linear solver libraries typically consider linear residual tolerances using the Lo norm, whereas ARKODE
focuses on errors measured in the WRMS norm (2.24), the ARKLS interface internally converts between these quan-
tities when interfacing with linear solvers,

tolo = nrmfac toly pass. 5.1

Prior to the introduction of N_VGetLength() in SUNDIALS v5.0.0 the value of nrm fac was computed using the
vector dot product. Now, the functions ARKodeSetLSNormFactor () and ARKodeSetMassLSNormFactor () allow
for additional user control over these conversion factors.

int ARKodeSetLSNormFactor (void *arkode_mem, sunrealtype nrmfac)

Specifies the factor to use when converting from the integrator tolerance (WRMS norm) to the linear solver
tolerance (L2 norm) for Newton linear system solves.

Parameters
» arkode_mem — pointer to the ARKODE memory block.
» nrmfac - the norm conversion factor. If nrmfac is:
> 0 then the provided value is used.

= 0 then the conversion factor is computed using the vector length i.e., nrmfac =
sqrt (N_VGetLength(y)) (default).

< 0 then the conversion factor is computed using the vector dot product i.e., nrmfac
sqrt (N_VDotProd(v,v)) where all the entries of v are one.

Return values
» ARK_SUCCESS - the function exited successfully.
* ARK_MEM_NULL - arkode_mem was NULL.

* ARK_STEPPER_UNSUPPORTED - implicit solvers are not supported by the current time-
stepping module.

Note

This is only compatible with time-stepping modules that support implicit algebraic solvers.

This function must be called after the ARKLS system solver interface has been initialized through a call to
ARKodeSetLinearSolver().

Added in version 6.1.0.

int ARKodeSetMassLSNormFactor (void *arkode_mem, sunrealtype nrmfac)

Specifies the factor to use when converting from the integrator tolerance (WRMS norm) to the linear solver
tolerance (L2 norm) for mass matrix linear system solves.

Parameters

» arkode_mem — pointer to the ARKODE memory block.

5.3. ARKODE User-callable functions 125



User Documentation for ARKODE, v6.2.1

» nrmfac — the norm conversion factor. If nrmfac is:
> ( then the provided value is used.

= 0 then the conversion factor is computed using the vector length i.e., nrmfac =
sqrt(N_VGetLength(y)) (default).

< 0 then the conversion factor is computed using the vector dot product i.e., nrmfac
sqrt (N_VDotProd(v,v)) where all the entries of v are one.

Return values
» ARK_SUCCESS - the function exited successfully.
» ARK_MEM_NULL - arkode_mem was NULL.

* ARK_STEPPER_UNSUPPORTED — non-identity mass matrices are not supported by the current
time-stepping module.

Note

This is only compatible with time-stepping modules that support non-identity mass matrices.

This function must be called after the ARKLS mass matrix solver interface has been initialized through a
call to ARKodeSetMassLinearSolver().

Added in version 6.1.0.

5.3.8.5 Rootfinding optional input functions

The following functions can be called to set optional inputs to control the rootfinding algorithm, the mathematics of
which are described in §2.16.

Optional input Function name Default
Direction of zero-crossings to monitor ARKodeSetRootDirection() both
Disable inactive root warnings ARKodeSetNoInactiveRootWarn() enabled

int ARKodeSetRootDirection(void *arkode mem, int *rootdir)

Specifies the direction of zero-crossings to be located and returned.
Parameters
» arkode_mem — pointer to the ARKODE memory block.

e rootdir - state array of length nrtfn, the number of root functions g; (the value of nrtfn was
supplied in the call to ARKodeRootInit()). If rootdir[i] == O then crossing in either
direction for g; should be reported. A value of +1 or -1 indicates that the solver should report
only zero-crossings where g; is increasing or decreasing, respectively.

Return values
* ARK_SUCCESS — the function exited successfully.
e ARK_MEM_NULL - arkode_mem was NULL.
* ARK_ILL_INPUT - an argument had an illegal value.

126 Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

Note

The default behavior is to monitor for both zero-crossing directions.

Added in version 6.1.0.

int ARKodeSetNoInactiveRootWarn(void *arkode_mem)
Disables issuing a warning if some root function appears to be identically zero at the beginning of the integration.

Parameters

» arkode_mem — pointer to the ARKODE memory block.
Return values

* ARK_SUCCESS — the function exited successfully.

* ARK_MEM_NULL - arkode_mem was NULL.

Note

ARKODE will not report the initial conditions as a possible zero-crossing (assuming that one or more com-
ponents g; are zero at the initial time). However, if it appears that some g; is identically zero at the initial
time (i.e., g; is zero at the initial time and after the first step), ARKODE will issue a warning which can be
disabled with this optional input function.

Added in version 6.1.0.

5.3.9 Interpolated output function

An optional function ARKodeGetDky () is available to obtain additional values of solution-related quantities. This
function should only be called after a successful return from ARKodeEvolve(), as it provides interpolated values
either of y or of its derivatives (up to the Sth derivative) interpolated to any value of ¢ in the last internal step taken
by ARKodeEvolve (). Internally, this “dense output” or “continuous extension” algorithm is identical to the algorithm
used for the maximum order implicit predictors, described in §2.15.5.2, except that derivatives of the polynomial model
may be evaluated upon request.

int ARKodeGetDky (void *arkode_mem, sunrealtype t, int k, N_Vector dky)

Computes the k-th derivative of the function y at the time t, i.e. y*)(t), for values of the independent variable
satisfying ¢, — h,, < t < t,, with ¢,, as current internal time reached, and h,, is the last internal step size
successfully used by the solver. This routine uses an interpolating polynomial of degree min(degree, 5), where
degree is the argument provided to ARKodeSetInterpolantDegree (). The user may request k in the range
{0,..., min(degree, kmax)} where kmax depends on the choice of interpolation module. For Hermite interpolants
kmax = 5 and for Lagrange interpolants kmax = 3.

Parameters
» arkode_mem — pointer to the ARKODE memory block.
* t — the value of the independent variable at which the derivative is to be evaluated.
* k — the derivative order requested.
* dky — output vector (must be allocated by the user).
Return values

* ARK_SUCCESS - the function exited successfully.

5.3. ARKODE User-callable functions 127



User Documentation for ARKODE, v6.2.1

ARK_BAD_K — k is not in the range {O,..., min(degree, kmax)}.
* ARK_BAD_T - ¢ is not in the interval [t,, — Ay, ty]-

e ARK_BAD_DKY - the dky vector was NULL.

e ARK_MEM_NULL - arkode_mem was NULL.

Note

It is only legal to call this function after a successful return from ARKodeEvolve().

A user may access the values t,, and h,, via the functions ARKodeGetCurrentTime () and ARKodeGet-
LastStep(), respectively.

Added in version 6.1.0.

5.3.10 Optional output functions

ARKODE provides an extensive set of functions that can be used to obtain solver performance information. We organize
these into groups:

1.

wooA »N

General ARKODE output routines are in §5.3.10.1,
ARKODE implicit solver output routines are in §5.3.10.2,
Output routines regarding root-finding results are in §5.3.10.3,
Linear solver output routines are in §5.3.10.4 and

General usability routines (e.g. to print the current ARKODE parameters, or output the current Butcher table(s))
are in §5.3.10.5.

Following each table, we elaborate on each function.

Some of the optional outputs, especially the various counters, can be very useful in determining the efficiency of various
methods inside ARKODE. For example:

The counters nsteps, nfe_evals and nfi_evals provide a rough measure of the overall cost of a given run, and can
be compared between runs with different solver options to suggest which set of options is the most efficient.

The ratio nniters/nsteps measures the performance of the nonlinear iteration in solving the nonlinear systems at
each stage, providing a measure of the degree of nonlinearity in the problem. Typical values of this for a Newton
solver on a general problem range from 1.1 to 1.8.

When using a Newton nonlinear solver, the ratio njevals/nniters (when using a direct linear solver), and the ratio
nliters/nniters (when using an iterative linear solver) can indicate the quality of the approximate Jacobian or pre-
conditioner being used. For example, if this ratio is larger for a user-supplied Jacobian or Jacobian-vector product
routine than for the difference-quotient routine, it can indicate that the user-supplied Jacobian is inaccurate.

The ratio expsteps/accsteps can measure the quality of the ImEx splitting used, since a higher-quality splitting
will be dominated by accuracy-limited steps, and hence a lower ratio.

The ratio nsteps/step_attempts can measure the quality of the time step adaptivity algorithm, since a poor algo-
rithm will result in more failed steps, and hence a lower ratio.

It is therefore recommended that users retrieve and output these statistics following each run, and take some time to
investigate alternate solver options that will be more optimal for their particular problem of interest.

128

Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

5.3.10.1 Main solver optional output functions

Optional output

Function name

Size of ARKODE real and integer workspaces
Cumulative number of internal steps

Actual initial time step size used

Step size used for the last successful step

Step size to be attempted on the next step
Integration direction, e.g., forward or backward
Current internal time reached by the solver
Current internal solution reached by the solver
Current vy value used by the solver

Suggested factor for tolerance scaling

Error weight vector for state variables

Residual weight vector

Single accessor to many statistics at once
Print all statistics

Name of constant associated with a return flag

No.
No.
No.
No.
No.
No.

of explicit stability-limited steps

of accuracy-limited steps

of attempted steps

of RHS evaluations

of local error test failures that have occurred
of failed steps due to a nonlinear solver failure

Estimated local truncation error vector

Number of constraint test failures

Retrieve a pointer for user data

Retrieve the accumulated temporal error estimate

ARKodeGetliorkSpace ()
ARKodeGetNumSteps ()
ARKodeGetActualInitStep()
ARKodeGetLastStep()
ARKodeGetCurrentStep()
ARKodeGetStepDirection()
ARKodeGetCurrentTime ()
ARKodeGetCurrentState()
ARKodeGetCurrentGamma ()
ARKodeGetTolScaleFactor()
ARKodeGetErriWeights ()
ARKodeGetReslWeights ()
ARKodeGetStepStats()
ARKodePrintAllStats()
ARKodeGetReturnFlagName ()
ARKodeGetNumExpSteps ()
ARKodeGetNumAccSteps ()
ARKodeGetNumStepAttempts ()
ARKodeGetNumRhsEvals ()
ARKodeGetNumErrTestFails()
ARKodeGetNumStepSolveFails()
ARKodeGetEstLocalErrors()
ARKodeGetNumConstrFails()
ARKodeGetUserData()
ARKodeGetAccumulatedError ()

int ARKodeGetWorkSpace (void *arkode_mem, long int *lenrw, long int *leniw)

Returns the ARKODE real and integer workspace sizes.

Parameters

» arkode_mem — pointer to the ARKODE memory block.

* lenrw — the number of sunrealtype values in the ARKODE workspace.

* leniw - the number of integer values in the ARKODE workspace.

Return values

» ARK_SUCCESS - the function exited successfully.

e ARK_MEM_NULL - arkode_mem was NULL.

Added in version 6.1.0.

int ARKodeGetNumSteps (void *arkode_mem, long int *nsteps)

Returns the cumulative number of internal steps taken by the solver (so far).

Parameters

» arkode_mem — pointer to the ARKODE memory block.

* nsteps — number of steps taken in the solver.

5.3. ARKODE User-callable functions

129



User Documentation for ARKODE, v6.2.1

Return values
* ARK_SUCCESS — the function exited successfully.
e ARK_MEM_NULL - arkode_mem was NULL.
Added in version 6.1.0.

int ARKodeGetActualInitStep(void *arkode_mem, sunrealtype *hinused)

Returns the value of the integration step size used on the first step.
Parameters
» arkode_mem — pointer to the ARKODE memory block.
* hinused - actual value of initial step size.
Return values
* ARK_SUCCESS — the function exited successfully.
* ARK_MEM_NULL - arkode_mem was NULL.

Note

Even if the value of the initial integration step was specified by the user through a call to ARKodeSetInit-
Step (), this value may have been changed by ARKODE to ensure that the step size fell within the prescribed
bounds (hmin < hg < hmaz), or to satisfy the local error test condition, or to ensure convergence of the

nonlinear solver.

Added in version 6.1.0.

int ARKodeGetLastStep (void *arkode_mem, sunrealtype *hlast)

Returns the integration step size taken on the last successful internal step.

Parameters
» arkode_mem — pointer to the ARKODE memory block.
* hlast — step size taken on the last internal step.
Return values
» ARK_SUCCESS - the function exited successfully.
* ARK_MEM_NULL - arkode_mem was NULL.
Added in version 6.1.0.

int ARKodeGetCurrentStep (void *arkode_mem, sunrealtype *hcur)

Returns the integration step size to be attempted on the next internal step.

Parameters
» arkode_mem — pointer to the ARKODE memory block.
* hcur - step size to be attempted on the next internal step.
Return values
» ARK_SUCCESS - the function exited successfully.
e ARK_MEM_NULL - arkode_mem was NULL.
Added in version 6.1.0.

130

Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

int ARKodeGetStepDirection(void *arkode_mem, sunrealtype *stepdir)

Returns the direction of integration that will be used on the next internal step.
Parameters
» arkode_mem — pointer to the ARKODE memory block.

* stepdir - a positive number if integrating forward, a negative number if integrating back-
ward, or zero if the direction has not been set.

Return values
* ARK_SUCCESS — the function exited successfully.
e ARK_MEM_NULL - arkode_mem was NULL.
Added in version 6.2.0.

int ARKodeGetCurrentTime (void *arkode_mem, sunrealtype *tcur)

Returns the current internal time reached by the solver.
Parameters
» arkode_mem — pointer to the ARKODE memory block.
* tcur - current internal time reached.
Return values
* ARK_SUCCESS — the function exited successfully.
e ARK_MEM_NULL - arkode_mem was NULL.
Added in version 6.1.0.

int ARKodeGetCurrentState (void *arkode_mem, N_Vector *ycur)

Returns the current internal solution reached by the solver.
Parameters
» arkode_mem — pointer to the ARKODE memory block.
e ycur — current internal solution.
Return values
* ARK_SUCCESS — the function exited successfully.
* ARK_MEM_NULL - arkode_mem was NULL.

Note

Users should exercise extreme caution when using this function, as altering values of ycur may lead to un-
desirable behavior, depending on the particular use case and on when this routine is called.

Added in version 6.1.0.

int ARKodeGetCurrentGamma (void *arkode_mem, sunrealtype *gamma)
Returns the current internal value of + used in the implicit solver Newton matrix (see equation (2.47)).

Parameters
» arkode_mem — pointer to the ARKODE memory block.

* gamma — current step size scaling factor in the Newton system.

5.3. ARKODE User-callable functions 131



User Documentation for ARKODE, v6.2.1

Return values
* ARK_SUCCESS — the function exited successfully.
e ARK_MEM_NULL - arkode_mem was NULL.

* ARK_STEPPER_UNSUPPORTED - implicit solvers are not supported by the current time-

stepping module.

Note

This is only compatible with time-stepping modules that support implicit algebraic solvers.

Added in version 6.1.0.

int ARKodeGetTolScaleFactor (void *arkode_mem, sunrealtype *tolsfac)

Returns a suggested factor by which the user’s tolerances should be scaled when too much accuracy has been

requested for some internal step.
Parameters
» arkode_mem — pointer to the ARKODE memory block.
* tolsfac - suggested scaling factor for user-supplied tolerances.
Return values
» ARK_SUCCESS - the function exited successfully.
* ARK_MEM_NULL - arkode_mem was NULL.
Added in version 6.1.0.

int ARKodeGetErrWeights (void *arkode_mem, N_Vecror eweight)

Returns the current error weight vector.
Parameters
» arkode_mem — pointer to the ARKODE memory block.
» eweight - solution error weights at the current time.
Return values
» ARK_SUCCESS - the function exited successfully.
e ARK_MEM_NULL - arkode_mem was NULL.

Note

The user must allocate space for eweight, that will be filled in by this function.

Added in version 6.1.0.

int ARKodeGetResWeights (void *arkode_mem, N_Vecror rweight)

Returns the current residual weight vector.
Parameters
» arkode_mem — pointer to the ARKODE memory block.

» rweight - residual error weights at the current time.

132

Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

Return values
* ARK_SUCCESS — the function exited successfully.
e ARK_MEM_NULL - arkode_mem was NULL.

* ARK_STEPPER_UNSUPPORTED — non-identity mass matrices are not supported by the current
time-stepping module.

Note
This is only compatible with time-stepping modules that support non-identity mass matrices.

The user must allocate space for rweight, that will be filled in by this function.

Added in version 6.1.0.

int ARKodeGetStepStats(void *arkode_mem, long int *nsteps, sunrealtype *hinused, sunrealtype *hlast,
sunrealtype *hcur, sunrealtype *tcur)

Returns many of the most useful optional outputs in a single call.
Parameters
» arkode_mem — pointer to the ARKODE memory block.
* nsteps — number of steps taken in the solver.
* hinused - actual value of initial step size.
* hlast — step size taken on the last internal step.
* hcur - step size to be attempted on the next internal step.
* tcur - current internal time reached.
Return values
* ARK_SUCCESS — the function exited successfully.
* ARK_MEM_NULL - arkode_mem was NULL.
Added in version 6.1.0.
int ARKodePrintAllStats(void *arkode_mem, FILE *outfile, SUNOutputFormat fmt)

Outputs all of the integrator, nonlinear solver, linear solver, and other statistics.
Parameters
» arkode_mem — pointer to the ARKODE memory block.
» outfile - pointer to output file.
 fmt — the output format:
— SUN_OUTPUTFORMAT_TABLE — prints a table of values

— SUN_OUTPUTFORMAT_CSV — prints a comma-separated list of key and value pairs e.g.,
keyl,valuel,key2,value2,...

Return values
* ARK_SUCCESS — the function exited successfully.
e ARK_MEM_NULL - arkode_mem was NULL.
e ARK_ILL_INPUT - an invalid formatting option was provided.

5.3. ARKODE User-callable functions 133



User Documentation for ARKODE, v6.2.1

Note

The Python module tools/suntools provides utilities to read and output the data from a SUNDIALS CSV
output file using the key and value pair format.

Added in version 6.1.0.

char *ARKodeGetReturnFlagName (long int flag)
Returns the name of the ARKODE constant corresponding to flag. See ARKODE Constants.

Parameters
» flag — a return flag from an ARKODE function.

Returns
The return value is a string containing the name of the corresponding constant.

Added in version 6.1.0.

int ARKodeGetNumExpSteps (void *arkode_mem, long int *expsteps)

Returns the cumulative number of stability-limited steps taken by the solver (so far). If the combination of the
maximum number of stages and the current time step size in the LSRKStep module will not allow for a stable
step, the counter also accounts for such returns.

Parameters

» arkode_mem — pointer to the ARKODE memory block.

* expsteps — number of stability-limited steps taken in the solver.
Return values

» ARK_SUCCESS - the function exited successfully.

o ARK_MEM_NULL - arkode_mem was NULL.

* ARK_STEPPER_UNSUPPORTED - adaptive step sizes are not supported by the current time-
stepping module.

Note

This is only compatible with time-stepping modules that support temporal adaptivity.

Added in version 6.1.0.

int ARKodeGetNumAccSteps (void *arkode_mem, long int *accsteps)
Returns the cumulative number of accuracy-limited steps taken by the solver (so far).

Parameters

» arkode_mem — pointer to the ARKODE memory block.

* accsteps — number of accuracy-limited steps taken in the solver.
Return values

» ARK_SUCCESS - the function exited successfully.

e ARK_MEM_NULL - arkode_mem was NULL.

* ARK_STEPPER_UNSUPPORTED - adaptive step sizes are not supported by the current time-
stepping module.

134 Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

Note

This is only compatible with time-stepping modules that support temporal adaptivity.

Added in version 6.1.0.

int ARKodeGetNumStepAttempts (void *arkode_mem, long int *step_attempts)

Returns the cumulative number of steps attempted by the solver (so far).
Parameters
» arkode_mem — pointer to the ARKODE memory block.
* step_attempts — number of steps attempted by solver.
Return values
* ARK_SUCCESS — the function exited successfully.
e ARK_MEM_NULL - arkode_mem was NULL.
Added in version 6.1.0.

int ARKodeGetNumRhsEvals (void *arkode_mem, int partition_index, long int *num_rhs_evals)

Returns the number of calls to the user’s right-hand side function (so far). For implicit methods or methods with
an implicit partition, the count does not include calls made by a linear solver or preconditioner.

Parameters
» arkode_mem — pointer to the ARKODE memory block.

* num_partition — the right-hand side partition index:

For ERKStep, 0 corresponds to f(t,y)
For ARKStep, 0 corresponds to f¥(¢,4) and 1 to fI(t,v)

For MRIStep, 0 corresponds to f¥(¢,4) and 1 to f1(¢,v)

For SPRKStep, 8 corresponds to f1(¢,p) and 1 to fa(¢, q)
A negative index will return the sum of the evaluations for each partition.
* num_rhs_evals - the number of right-hand side evaluations.
Return values
* ARK_SUCCESS — the function exited successfully.
* ARK_MEM_NULL - if arkode_mem was NULL.

e ARK_ILL_INPUT - if num_partiton was invalid for the stepper or num_rhs_evals was
NULL

Added in version 6.2.0.

int ARKodeGetNumErrTestFails (void *arkode_mem, long int *netfails)
Returns the number of local error test failures that have occurred (so far).

Parameters
» arkode_mem — pointer to the ARKODE memory block.
e netfails — number of error test failures.

Return values

5.3. ARKODE User-callable functions 135



User Documentation for ARKODE, v6.2.1

» ARK_SUCCESS - the function exited successfully.
* ARK_MEM_NULL - arkode_mem was NULL.

Note

This is only compatible with time-stepping modules that support temporal adaptivity.

Added in version 6.1.0.

int ARKodeGetNumStepSolveFails (void *arkode_mem, long int *ncnf)

Returns the number of failed steps due to a nonlinear solver failure (so far).
Parameters
» arkode_mem — pointer to the ARKODE memory block.
* ncnf — number of step failures.
Return values
* ARK_SUCCESS — the function exited successfully.
* ARK_MEM_NULL - arkode_mem was NULL.

e ARK_STEPPER_UNSUPPORTED - implicit solvers are not supported by the current time-
stepping module.

Note

This is only compatible with time-stepping modules that support implicit algebraic solvers.

Added in version 6.1.0.

int ARKodeGetEstLocalErrors (void *arkode_mem, N_Vector ele)

Returns the vector of estimated local truncation errors for the current step.
Parameters
» arkode_mem — pointer to the ARKODE memory block.
* ele - vector of estimated local truncation errors.
Return values
* ARK_SUCCESS — the function exited successfully.
e ARK_MEM_NULL - arkode_mem was NULL.

Note

The user must allocate space for ele, that will be filled in by this function.

The values returned in ele are valid only after a successful call to ARKodeEvolve() (i.e., it returned a non-
negative value).

The ele vector, together with the eweight vector from ARKodeGetErrifeights (), can be used to determine
how the various components of the system contributed to the estimated local error test. Specifically, that
error test uses the WRMS norm of a vector whose components are the products of the components of these

136 Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

two vectors. Thus, for example, if there were recent error test failures, the components causing the failures
are those with largest values for the products, denoted loosely as eweight[i]*ele[i].

Added in version 6.1.0.

int ARKodeGetNumConstrFails (void *arkode_mem, long int *nconstrfails)

Returns the cumulative number of constraint test failures (so far).
Parameters
» arkode_mem — pointer to the ARKODE memory block.
* nconstrfails — number of constraint test failures.
Return values
» ARK_SUCCESS - the function exited successfully.
* ARK_MEM_NULL - arkode_mem was NULL.

* ARK_STEPPER_UNSUPPORTED - adaptive step sizes are not supported by the current time-
stepping module.

Note

This is only compatible with time-stepping modules that support temporal adaptivity.

Added in version 6.1.0.

int ARKodeGetUserData (void *arkode_mem, void **user_data)
Returns the user data pointer previously set with ARKodeSetUserData().

Parameters
» arkode_mem — pointer to the ARKODE memory block.
» user_data — memory reference to a user data pointer.
Return values
* ARK_SUCCESS — the function exited successfully.
e ARK_MEM_NULL - arkode_mem was NULL.
Added in version 6.1.0.

int ARKodeGetAccumulatedError (void *arkode_mem, sunrealtype *accum_error)

Returns the accumulated temporal error estimate.
Parameters
» arkode_mem — pointer to the ARKODE memory block.
* accum_error — pointer to accumulated error estimate.
Return values
* ARK_SUCCESS — the function exited successfully.
* ARK_MEM_NULL - arkode_mem was NULL.

* ARK_WARNING — accumulated error estimation is currently disabled.

5.3. ARKODE User-callable functions 137



User Documentation for ARKODE, v6.2.1

* ARK_STEPPER_UNSUPPORTED — temporal error estimation is not supported by the current
time-stepping module.

Added in version 6.2.0.

5.3.10.2 Implicit solver optional output functions

Optional output Function name

Computes state given a correction ARKodeComputeState()

Access data to compute the nonlin. sys. function ARKodeGetNonlinearSystemData()
No. of calls to linear solver setup function ARKodeGetNumLinSolvSetups ()

No. of nonlinear solver iterations ARKodeGetNumNonlinSolvIters()

No. of nonlinear solver iterations ARKodeGetNumNonlinSolvIters()

No. of nonlinear solver convergence failures ARKodeGetNumNonlinSolvConvFails ()

Single accessor to all nonlinear solver statistics ARKodeGetNonlinSolvStats()

int ARKodeGetNumLinSolvSetups (void *arkode_mem, long int *nlinsetups)
Returns the number of calls made to the linear solver’s setup routine (so far).

Parameters
» arkode_mem — pointer to the ARKODE memory block.
* nlinsetups — number of linear solver setup calls made.
Return values
* ARK_SUCCESS — the function exited successfully.
* ARK_MEM_NULL - arkode_mem was NULL.

* ARK_STEPPER_UNSUPPORTED - linear solvers are not supported by the current time-stepping
module.

Note

This is only compatible with time-stepping modules that support implicit algebraic solvers.

This is only accumulated for the “life” of the nonlinear solver object; the counter is reset whenever a new
nonlinear solver module is “attached” to ARKODE, or when ARKODE is resized.

Added in version 6.1.0.

int ARKodeGetNumNonlinSolvIters (void *arkode_mem, long int *nniters)
Returns the number of nonlinear solver iterations performed (so far).

Parameters
» arkode_mem — pointer to the ARKODE memory block.
* nniters — number of nonlinear iterations performed.
Return values

* ARK_STEPPER_UNSUPPORTED - nonlinear solvers are not supported by the current time-
stepping module.

138 Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

» ARK_SUCCESS - the function exited successfully.
* ARK_MEM_NULL - arkode_mem was NULL.
* ARK_NLS_OP_ERR — the SUNNONLINSOL object returned a failure flag.

Note

This is only compatible with time-stepping modules that support implicit algebraic solvers.

This is only accumulated for the “life” of the nonlinear solver object; the counter is reset whenever a new
nonlinear solver module is “attached” to ARKODE, or when ARKODE is resized.

Added in version 6.1.0.

int ARKodeGetNumNonlinSolvConvFails(void *arkode_mem, long int *nncfails)

Returns the number of nonlinear solver convergence failures that have occurred (so far).
Parameters
» arkode_mem — pointer to the ARKODE memory block.
* nncfails — number of nonlinear convergence failures.
Return values
» ARK_SUCCESS - the function exited successfully.
* ARK_MEM_NULL - arkode_mem was NULL.

* ARK_STEPPER_UNSUPPORTED — nonlinear solvers are not supported by the current time-
stepping module.

Note

This is only compatible with time-stepping modules that support implicit algebraic solvers.

This is only accumulated for the “life” of the nonlinear solver object; the counter is reset whenever a new
nonlinear solver module is “attached” to ARKODE, or when ARKODE is resized.

Added in version 6.1.0.

int ARKodeGetNonlinSolvStats (void *arkode_mem, long int *nniters, long int *nncfails)

Returns all of the nonlinear solver statistics in a single call.

Parameters
» arkode_mem — pointer to the ARKODE memory block.
* nniters — number of nonlinear iterations performed.
» nncfails — number of nonlinear convergence failures.

Return values
» ARK_SUCCESS - the function exited successfully.
* ARK_MEM_NULL - arkode_mem was NULL.
* ARK_NLS_OP_ERR — the SUNNONLINSOL object returned a failure flag.

* ARK_STEPPER_UNSUPPORTED — nonlinear solvers are not supported by the current time-
stepping module.

5.3. ARKODE User-callable functions 139



User Documentation for ARKODE, v6.2.1

Note

This is only compatible with time-stepping modules that support implicit algebraic solvers.

This is only accumulated for the “life” of the nonlinear solver object; the counters are reset whenever a new
nonlinear solver module is “attached” to ARKODE, or when ARKODE is resized.

Added in version 6.1.0.

5.3.10.3 Rootfinding optional output functions

Optional output Function name

Array showing roots found ARKodeGetRootInfo()
No. of calls to user root function ARKodeGetNumGEvals()

int ARKodeGetRootInfo (void *arkode_mem, int *rootsfound)
Returns an array showing which functions were found to have a root.

Parameters
 arkode_mem — pointer to the ARKODE memory block.

» rootsfound - array of length nrfn with the indices of the user functions g; found to have
a root (the value of nrtfn was supplied in the call to ARKodeRootInit()). Fori = 0...
nrtfn-1, rootsfound[i] is nonzero if g; has a root, and 0 if not.

Return values
* ARK_SUCCESS — the function exited successfully.
e ARK_MEM_NULL - arkode_mem was NULL.

Note

The user must allocate space for rootsfound prior to calling this function.

For the components of g; for which a root was found, the sign of rootsfound[i] indicates the direction of
zero-crossing. A value of +1 indicates that g; is increasing, while a value of -1 indicates a decreasing g;.

Added in version 6.1.0.

int ARKodeGetNumGEvals (void *arkode_mem, long int *ngevals)

Returns the cumulative number of calls made to the user’s root function g.
Parameters
» arkode_mem — pointer to the ARKODE memory block.
* ngevals — number of calls made to g so far.
Return values
» ARK_SUCCESS - the function exited successfully.
o ARK_MEM_NULL - arkode_mem was NULL.
Added in version 6.1.0.

140 Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

5.3.10.4 Linear solver interface optional output functions

A variety of optional outputs are available from the ARKLS interface, as listed in the following table and elaborated
below. We note that where the name of an output would otherwise conflict with the name of an optional output from
the main solver, a suffix LS (for Linear Solver) or MLS (for Mass Linear Solver) has been added here (e.g. lenrwLS).

Optional output

Function name

Stored Jacobian of the ODE RHS function

Time at which the Jacobian was evaluated

Step number at which the Jacobian was evaluated
Size of real and integer workspaces

No. of Jacobian evaluations

No. of preconditioner evaluations

No. of preconditioner solves

No. of linear iterations

No. of linear convergence failures

No. of Jacobian-vector setup evaluations

No. of Jacobian-vector product evaluations

No. of fi calls for finite diff. J or Jov evals.

Last return from a linear solver function

Name of constant associated with a return flag
Size of real and integer mass matrix solver workspaces
No. of mass matrix solver setups (incl. M evals.)
No. of mass matrix multiply setups

No. of mass matrix multiplies

No. of mass matrix solves

No. of mass matrix preconditioner evaluations
No. of mass matrix preconditioner solves

No. of mass matrix linear iterations

No. of mass matrix solver convergence failures
No. of mass-matrix-vector setup evaluations
Last return from a mass matrix solver function

ARKodeGetJac ()
ARKodeGetJacTime ()
ARKodeGetJacNumSteps ()
ARKodeGetLinlWorkSpace ()
ARKodeGetNumJacEvals()
ARKodeGetNumPrecEvals ()
ARKodeGetNumPrecSolves ()
ARKodeGetNumLinIters()
ARKodeGetNumLinConvFails ()
ARKodeGetNumJTSetupEvals()
ARKodeGetNumJtimesEvals ()
ARKodeGetNumLinRhsEvals()
ARKodeGetLastLinFlag()
ARKodeGetLinReturnFlagName ()
ARKodeGetMassWorkSpace ()
ARKodeGetNumMassSetups ()
ARKodeGetNumMassMultSetups ()
ARKodeGetNumMassMult ()
ARKodeGetNumMassSolves ()
ARKodeGetNumMassPrecEvals ()
ARKodeGetNumMassPrecSolves ()
ARKodeGetNumMassIters()
ARKodeGetNumMassConvFails ()
ARKodeGetNumMTSetups ()
ARKodeGetLastMassFlag()

int ARKodeGetJac (void *arkode_mem, SUNMatrix *J)

Returns the internally stored copy of the Jacobian matrix of the ODE implicit right-hand side function.

Parameters

» arkode_mem — the ARKODE memory structure.

¢ J — the Jacobian matrix.

Return values

* ARKLS_SUCCESS - the output value has been successfully set.

e ARKLS_MEM_NULL — arkode_mem was NULL.

e ARKLS_LMEM_NULL - the linear solver interface has not been initialized.

* ARK_STEPPER_UNSUPPORTED - linear solvers are not supported by the current time-stepping

module.

5.3.

ARKODE User-callable functions

141



User Documentation for ARKODE, v6.2.1

Note

This is only compatible with time-stepping modules that support implicit algebraic solvers.

Warning

This function is provided for debugging purposes and the values in the returned matrix should not be altered.

Added in version 6.1.0.

int ARKodeGetJacTime (void *arkode_mem, sunrealtype *t_J)

Returns the time at which the internally stored copy of the Jacobian matrix of the ODE implicit right-hand side
function was evaluated.

Parameters
» arkode_mem — the ARKODE memory structure.
* t_J — the time at which the Jacobian was evaluated.
Return values
* ARKLS_SUCCESS - the output value has been successfully set.
e ARKLS_MEM_NULL - arkode_mem was NULL.
* ARKLS_LMEM_NULL - the linear solver interface has not been initialized.

* ARK_STEPPER_UNSUPPORTED - linear solvers are not supported by the current time-stepping
module.

Note

This is only compatible with time-stepping modules that support implicit algebraic solvers.

int ARKodeGetJacNumSteps (void *arkode_mem, long int *nst_J)

Returns the value of the internal step counter at which the internally stored copy of the Jacobian matrix of the
ODE implicit right-hand side function was evaluated.

Parameters

» arkode_mem — the ARKODE memory structure.

* nst_J — the value of the internal step counter at which the Jacobian was evaluated.
Return values

* ARKLS_SUCCESS - the output value has been successfully set.

e ARKLS_MEM_NULL - arkode_mem was NULL.

* ARKLS_LMEM_NULL - the linear solver interface has not been initialized.

* ARK_STEPPER_UNSUPPORTED - linear solvers are not supported by the current time-stepping
module.

142 Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

Note

This is only compatible with time-stepping modules that support implicit algebraic solvers.

Added in version 6.1.0.

int ARKodeGetLinWorkSpace (void *arkode_mem, long int *lenrwLS, long int *leniwLS)

Returns the real and integer workspace used by the ARKLS linear solver interface.

Parameters

» arkode_mem — pointer to the ARKODE memory block.

* lenrwLS - the number of sunrealtype values in the ARKLS workspace.

* leniwLS — the number of integer values in the ARKLS workspace.
Return values

* ARKLS_SUCCESS - the function exited successfully.

* ARKLS_MEM_NULL — arkode_mem was NULL.

e ARKLS_LMEM_NULL - the linear solver memory was NULL.

* ARK_STEPPER_UNSUPPORTED - linear solvers are not supported by the current time-stepping
module.

Note

This is only compatible with time-stepping modules that support implicit algebraic solvers.

The workspace requirements reported by this routine correspond only to memory allocated within this inter-
face and to memory allocated by the SUNLinearSolver object attached to it. The template Jacobian matrix
allocated by the user outside of ARKLS is not included in this report.

In a parallel setting, the above values are global (i.e. summed over all processors).

Added in version 6.1.0.

int ARKodeGetNumJacEvals (void *arkode_mem, long int *njevals)
Returns the number of Jacobian evaluations.

Parameters
» arkode_mem — pointer to the ARKODE memory block.
e njevals — number of Jacobian evaluations.
Return values
* ARKLS_SUCCESS - the function exited successfully.
* ARKLS_MEM_NULL - arkode_mem was NULL.
* ARKLS_LMEM_NULL — the linear solver memory was NULL.

* ARK_STEPPER_UNSUPPORTED - linear solvers are not supported by the current time-stepping
module.

5.3. ARKODE User-callable functions 143



User Documentation for ARKODE, v6.2.1

Note

This is only compatible with time-stepping modules that support implicit algebraic solvers.

This is only accumulated for the “life” of the linear solver object; the counter is reset whenever a new linear
solver module is “attached” to ARKODE, or when ARKODE is resized.

Added in version 6.1.0.

int ARKodeGetNumPrecEvals (void *arkode_mem, long int *npevals)

Returns the total number of preconditioner evaluations, i.e. the number of calls made to psetup with jok =
SUNFALSE and that returned *jcurPtr = SUNTRUE.

Parameters
» arkode_mem — pointer to the ARKODE memory block.
e npevals — the current number of calls to psetup.
Return values
* ARKLS_SUCCESS - the function exited successfully.
e ARKLS_MEM_NULL - arkode_mem was NULL.
e ARKLS_LMEM_NULL - the linear solver memory was NULL.

* ARK_STEPPER_UNSUPPORTED - linear solvers are not supported by the current time-stepping
module.

Note

This is only compatible with time-stepping modules that support implicit algebraic solvers.

This is only accumulated for the “life” of the linear solver object; the counter is reset whenever a new linear
solver module is “attached” to ARKODE, or when ARKODE is resized.

Added in version 6.1.0.

int ARKodeGetNumPrecSolves (void *arkode_mem, long int *npsolves)
Returns the number of calls made to the preconditioner solve function, psolve.

Parameters
» arkode_mem — pointer to the ARKODE memory block.
» npsolves — the number of calls to psolve.
Return values
* ARKLS_SUCCESS - the function exited successfully.
e ARKLS_MEM_NULL — arkode_mem was NULL.
e ARKLS_LMEM_NULL - the linear solver memory was NULL.

* ARK_STEPPER_UNSUPPORTED - linear solvers are not supported by the current time-stepping
module.

144 Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

Note

This is only compatible with time-stepping modules that support implicit algebraic solvers.

This is only accumulated for the “life” of the linear solver object; the counter is reset whenever a new linear
solver module is “attached” to ARKODE, or when ARKODE is resized.

Added in version 6.1.0.

int ARKodeGetNumLinIters(void *arkode_mem, long int *nliters)

Returns the cumulative number of linear iterations.
Parameters
» arkode_mem — pointer to the ARKODE memory block.
* nliters - the current number of linear iterations.
Return values
* ARKLS_SUCCESS - the function exited successfully.
e ARKLS_MEM_NULL - arkode_mem was NULL.
e ARKLS_LMEM_NULL - the linear solver memory was NULL.

* ARK_STEPPER_UNSUPPORTED - linear solvers are not supported by the current time-stepping
module.

Note

This is only compatible with time-stepping modules that support implicit algebraic solvers.

This is only accumulated for the “life” of the linear solver object; the counter is reset whenever a new linear
solver module is “attached” to ARKODE, or when ARKODE is resized.

Added in version 6.1.0.

int ARKodeGetNumLinConvFails (void *arkode_mem, long int *nlcfails)

Returns the cumulative number of linear convergence failures.
Parameters
» arkode_mem — pointer to the ARKODE memory block.
* nlcfails - the current number of linear convergence failures.
Return values
* ARKLS_SUCCESS - the function exited successfully.
e ARKLS_MEM_NULL — arkode_mem was NULL.
e ARKLS_LMEM_NULL - the linear solver memory was NULL.

* ARK_STEPPER_UNSUPPORTED - linear solvers are not supported by the current time-stepping
module.

5.3. ARKODE User-callable functions 145



User Documentation for ARKODE, v6.2.1

Note

This is only compatible with time-stepping modules that support implicit algebraic solvers.

This is only accumulated for the “life” of the linear solver object; the counter is reset whenever a new linear
solver module is “attached” to ARKODE, or when ARKODE is resized.

Added in version 6.1.0.

int ARKodeGetNumJTSetupEvals (void *arkode_mem, long int *njtsetup)

Returns the cumulative number of calls made to the user-supplied Jacobian-vector setup function, jtsetup.
Parameters
» arkode_mem — pointer to the ARKODE memory block.
e njtsetup - the current number of calls to jtsetup.
Return values
* ARKLS_SUCCESS - the function exited successfully.
* ARKLS_MEM_NULL - arkode_mem was NULL.
e ARKLS_LMEM_NULL - the linear solver memory was NULL.

* ARK_STEPPER_UNSUPPORTED - linear solvers are not supported by the current time-stepping
module.

Note

This is only compatible with time-stepping modules that support implicit algebraic solvers.

This is only accumulated for the “life” of the linear solver object; the counter is reset whenever a new linear
solver module is “attached” to ARKODE, or when ARKODE is resized.

Added in version 6.1.0.

int ARKodeGetNum]timesEvals(void *arkode_mem, long int *njvevals)
Returns the cumulative number of calls made to the Jacobian-vector product function, jtimes.

Parameters
» arkode_mem — pointer to the ARKODE memory block.
* njvevals — the current number of calls to jtimes.
Return values
* ARKLS_SUCCESS - the function exited successfully.
e ARKLS_MEM_NULL — arkode_mem was NULL.
e ARKLS_LMEM_NULL - the linear solver memory was NULL.

* ARK_STEPPER_UNSUPPORTED - linear solvers are not supported by the current time-stepping
module.

146 Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

Note

This is only compatible with time-stepping modules that support implicit algebraic solvers.

This is only accumulated for the “life” of the linear solver object; the counter is reset whenever a new linear
solver module is “attached” to ARKODE, or when ARKODE is resized.

Added in version 6.1.0.
int ARKodeGetNumLinRhsEvals (void *arkode_mem, long int *nfevalsL.S)

Returns the number of calls to the user-supplied implicit right-hand side function f for finite difference Jacobian
or Jacobian-vector product approximation.

Parameters

» arkode_mem — pointer to the ARKODE memory block.

» nfevalsLS - the number of calls to the user implicit right-hand side function.
Return values

* ARKLS_SUCCESS - the function exited successfully.

* ARKLS_MEM_NULL - arkode_mem was NULL.

e ARKLS_LMEM_NULL - the linear solver memory was NULL.

* ARK_STEPPER_UNSUPPORTED - linear solvers are not supported by the current time-stepping
module.

Note

This is only compatible with time-stepping modules that support implicit algebraic solvers.
The value nfevalsLS is incremented only if the default internal difference quotient function is used.

This is only accumulated for the “life” of the linear solver object; the counter is reset whenever a new linear
solver module is “attached” to ARKODE, or when ARKODE is resized.

Added in version 6.1.0.

int ARKodeGetLastLinFlag(void *arkode_mem, long int *Isflag)

Returns the last return value from an ARKLS routine.
Parameters
» arkode_mem — pointer to the ARKODE memory block.
* 1sflag - the value of the last return flag from an ARKLS function.
Return values
* ARKLS_SUCCESS - the function exited successfully.
* ARKLS_MEM_NULL - arkode_mem was NULL.
* ARKLS_LMEM_NULL - the linear solver memory was NULL.

* ARK_STEPPER_UNSUPPORTED - linear solvers are not supported by the current time-stepping
module.

5.3. ARKODE User-callable functions 147



User Documentation for ARKODE, v6.2.1

Note

This is only compatible with time-stepping modules that support implicit algebraic solvers.

If the ARKLS setup function failed when using the SUNLINSOL_DENSE or SUNLINSOL_BAND modules, then
the value of Isflag is equal to the column index (numbered from one) at which a zero diagonal element was
encountered during the LU factorization of the (dense or banded) Jacobian matrix. For all other failures,
Isflag is negative.

Otherwise, if the ARKLS setup function failed (ARKodeEvolve () returned ARK_LSETUP_FAIL), then Is-
flag will be SUNLS_PSET_FAIL_UNREC, SUNLS_ASET_FAIL_UNREC or SUN_ERR_EXT_FAIL.

If the ARKLS solve function failed (ARKodeEvolve () returned ARK_LSOLVE_FAIL), then Isflag contains
the error return flag from the SUNLinearSolver object, which will be one of: SUN_ERR_ARG_CORRUP-
TRRUPT, indicating that the SUNLinearSolver memory is NULL; SUNLS_ATIMES_NULL, indicating that
a matrix-free iterative solver was provided, but is missing a routine for the matrix-vector product approxi-
mation, SUNLS_ATIMES_FAIL_UNREC, indicating an unrecoverable failure in the Jv function; SUNLS_-
PSOLVE_NULL, indicating that an iterative linear solver was configured to use preconditioning, but no pre-
conditioner solve routine was provided, SUNLS_PSOLVE_FAIL UNREC, indicating that the preconditioner
solve function failed unrecoverably; SUNLS_GS_FAIL, indicating a failure in the Gram-Schmidt procedure
(SPGMR and SPFGMR only); SUNLS_QRSOL_FAIL, indicating that the matrix R was found to be singular
during the QR solve phase (SPGMR and SPFGMR only); or SUN_ERR_EXT FAIL, indicating an unrecov-
erable failure in an external iterative linear solver package.

Added in version 6.1.0.

char *ARKodeGetLinReturnFlagName (long int Isflag)

Returns the name of the ARKLS constant corresponding to Isflag.

Parameters
* 1sflag — a return flag from an ARKLS function.

Returns
The return value is a string containing the name of the corresponding constant. If using the
SUNLINSOL_DENSE or SUNLINSOL_BAND modules, then if 1 < Isflag < n (LU factorization
failed), this routine returns “NONE”.

Note

This is only compatible with time-stepping modules that support implicit algebraic solvers.

Added in version 6.1.0.

int ARKodeGetMassWorkSpace (void *arkode_mem, long int *lenrwMLS, long int *leniwMLS)
Returns the real and integer workspace used by the ARKLS mass matrix linear solver interface.

Parameters
» arkode_mem — pointer to the ARKODE memory block.
e lenrwMLS - the number of sunrealtype values in the ARKLS mass solver workspace.
* leniwMLS — the number of integer values in the ARKLS mass solver workspace.
Return values

* ARKLS_SUCCESS - the function exited successfully.

148 Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

e ARKLS_MEM_NULL - arkode_mem was NULL.
e ARKLS_LMEM_NULL - the linear solver memory was NULL.

* ARK_STEPPER_UNSUPPORTED — non-identity mass matrices are not supported by the current
time-stepping module.

Note

This is only compatible with time-stepping modules that support non-identity mass matrices.

The workspace requirements reported by this routine correspond only to memory allocated within this in-
terface and to memory allocated by the SUNLinearSolver object attached to it. The template mass matrix
allocated by the user outside of ARKLS is not included in this report.

In a parallel setting, the above values are global (i.e. summed over all processors).

Added in version 6.1.0.

int ARKodeGetNumMassSetups (void *arkode_mem, long int *nmsetups)

Returns the number of calls made to the ARKLS mass matrix solver ‘setup’ routine; these include all calls to the
user-supplied mass-matrix constructor function.

Parameters

» arkode_mem — pointer to the ARKODE memory block.

* nmsetups — number of calls to the mass matrix solver setup routine.
Return values

* ARKLS_SUCCESS - the function exited successfully.

* ARKLS_MEM_NULL - arkode_mem was NULL.

e ARKLS_LMEM_NULL - the linear solver memory was NULL.

* ARK_STEPPER_UNSUPPORTED — non-identity mass matrices are not supported by the current
time-stepping module.

Note

This is only compatible with time-stepping modules that support non-identity mass matrices.

This is only accumulated for the “life” of the linear solver object; the counter is reset whenever a new mass-
matrix linear solver module is “attached” to ARKODE, or when ARKODE is resized.

Added in version 6.1.0.

int ARKodeGetNumMassMultSetups (void *arkode_mem, long int *nmvsetups)

Returns the number of calls made to the ARKLS mass matrix ‘matvec setup’ (matrix-based solvers) routine.
Parameters
» arkode_mem — pointer to the ARKODE memory block.
* nmvsetups — number of calls to the mass matrix matrix-times-vector setup routine.
Return values

* ARKLS_SUCCESS - the function exited successfully.

5.3. ARKODE User-callable functions 149



User Documentation for ARKODE, v6.2.1

e ARKLS_MEM_NULL - arkode_mem was NULL.
e ARKLS_LMEM_NULL - the linear solver memory was NULL.

* ARK_STEPPER_UNSUPPORTED — non-identity mass matrices are not supported by the current
time-stepping module.

Note

This is only compatible with time-stepping modules that support non-identity mass matrices.

This is only accumulated for the “life” of the linear solver object; the counter is reset whenever a new mass-
matrix linear solver module is “attached” to ARKODE, or when ARKODE is resized.

Added in version 6.1.0.

int ARKodeGetNumMassMult (void *arkode_mem, long int *nmmults)

Returns the number of calls made to the ARKLS mass matrix ‘matvec’ routine (matrix-based solvers) or the
user-supplied mtimes routine (matris-free solvers).

Parameters

» arkode_mem — pointer to the ARKODE memory block.

e nmmults — number of calls to the mass matrix solver matrix-times-vector routine.
Return values

* ARKLS_SUCCESS - the function exited successfully.

e ARKLS_MEM_NULL - arkode_mem was NULL.

* ARKLS_LMEM_NULL — the linear solver memory was NULL.

* ARK_STEPPER_UNSUPPORTED — non-identity mass matrices are not supported by the current
time-stepping module.

Note

This is only compatible with time-stepping modules that support non-identity mass matrices.

This is only accumulated for the “life” of the linear solver object; the counter is reset whenever a new mass-
matrix linear solver module is “attached” to ARKODE, or when ARKODE is resized.

Added in version 6.1.0.

int ARKodeGetNumMassSolves (void *arkode_mem, long int *nmsolves)

Returns the number of calls made to the ARKLS mass matrix solver ‘solve’ routine.

Parameters

» arkode_mem — pointer to the ARKODE memory block.

» nmsolves — number of calls to the mass matrix solver solve routine.
Return values

* ARKLS_SUCCESS - the function exited successfully.

* ARKLS_MEM_NULL - arkode_mem was NULL.

* ARKLS_LMEM_NULL - the linear solver memory was NULL.

150 Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

* ARK_STEPPER_UNSUPPORTED — non-identity mass matrices are not supported by the current
time-stepping module.

Note

This is only compatible with time-stepping modules that support non-identity mass matrices.

This is only accumulated for the “life” of the linear solver object; the counter is reset whenever a new mass-
matrix linear solver module is “attached” to ARKODE, or when ARKODE is resized.

Added in version 6.1.0.

int ARKodeGetNumMassPrecEvals (void *arkode_mem, long int *nmpevals)

Returns the total number of mass matrix preconditioner evaluations, i.e. the number of calls made to psetup.
Parameters
» arkode_mem — pointer to the ARKODE memory block.
* nmpevals - the current number of calls to psetup.
Return values
* ARKLS_SUCCESS - the function exited successfully.
e ARKLS_MEM_NULL — arkode_mem was NULL.
e ARKLS_LMEM_NULL - the linear solver memory was NULL.

* ARK_STEPPER_UNSUPPORTED — non-identity mass matrices are not supported by the current
time-stepping module.

Note

This is only compatible with time-stepping modules that support non-identity mass matrices.

This is only accumulated for the “life” of the linear solver object; the counter is reset whenever a new mass-
matrix linear solver module is “attached” to ARKODE, or when ARKODE is resized.

Added in version 6.1.0.

int ARKodeGetNumMassPrecSolves (void *arkode_mem, long int *nmpsolves)

Returns the number of calls made to the mass matrix preconditioner solve function, psolve.
Parameters
» arkode_mem — pointer to the ARKODE memory block.
e nmpsolves — the number of calls to psolve.
Return values
* ARKLS_SUCCESS - the function exited successfully.
* ARKLS_MEM_NULL - arkode_mem was NULL.
e ARKLS_LMEM_NULL - the linear solver memory was NULL.

* ARK_STEPPER_UNSUPPORTED — non-identity mass matrices are not supported by the current
time-stepping module.

5.3. ARKODE User-callable functions 151



User Documentation for ARKODE, v6.2.1

Note

This is only compatible with time-stepping modules that support non-identity mass matrices.

This is only accumulated for the “life” of the linear solver object; the counter is reset whenever a new mass-
matrix linear solver module is “attached” to ARKODE, or when ARKODE is resized.

Added in version 6.1.0.

int ARKodeGetNumMassIters (void *arkode_mem, long int *nmiters)

Returns the cumulative number of mass matrix solver iterations.
Parameters
» arkode_mem — pointer to the ARKODE memory block.
* nmiters - the current number of mass matrix solver linear iterations.
Return values
* ARKLS_SUCCESS - the function exited successfully.
e ARKLS_MEM_NULL - arkode_mem was NULL.
e ARKLS_LMEM_NULL - the linear solver memory was NULL.

* ARK_STEPPER_UNSUPPORTED — non-identity mass matrices are not supported by the current
time-stepping module.

Note

This is only compatible with time-stepping modules that support non-identity mass matrices.

This is only accumulated for the “life” of the linear solver object; the counter is reset whenever a new mass-
matrix linear solver module is “attached” to ARKODE, or when ARKODE is resized.

Added in version 6.1.0.

int ARKodeGetNumMassConvFails(void *arkode_mem, long int *nmcfails)

Returns the cumulative number of mass matrix solver convergence failures.
Parameters
» arkode_mem — pointer to the ARKODE memory block.
» nmcfails - the current number of mass matrix solver convergence failures.
Return values
* ARKLS_SUCCESS - the function exited successfully.
e ARKLS_MEM_NULL — arkode_mem was NULL.
e ARKLS_LMEM_NULL - the linear solver memory was NULL.

* ARK_STEPPER_UNSUPPORTED — non-identity mass matrices are not supported by the current
time-stepping module.

152 Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

Note

This is only compatible with time-stepping modules that support non-identity mass matrices.

This is only accumulated for the “life” of the linear solver object; the counter is reset whenever a new mass-
matrix linear solver module is “attached” to ARKODE, or when ARKODE is resized.

Added in version 6.1.0.

int ARKodeGetNumMTSetups (void *arkode_mem, long int *nmtsetup)

Returns the cumulative number of calls made to the user-supplied mass-matrix-vector product setup function,
mtsetup.

Parameters

» arkode_mem — pointer to the ARKODE memory block.

e nmtsetup - the current number of calls to mzsetup.
Return values

* ARKLS_SUCCESS - the function exited successfully.

e ARKLS_MEM_NULL - arkode_mem was NULL.

* ARKLS_LMEM_NULL — the linear solver memory was NULL.

* ARK_STEPPER_UNSUPPORTED — non-identity mass matrices are not supported by the current
time-stepping module.

Note

This is only compatible with time-stepping modules that support non-identity mass matrices.

This is only accumulated for the “life” of the linear solver object; the counter is reset whenever a new mass-
matrix linear solver module is “attached” to ARKODE, or when ARKODE is resized.

Added in version 6.1.0.

int ARKodeGetLastMassFlag(void *arkode_mem, long int *mlsflag)

Returns the last return value from an ARKLS mass matrix interface routine.
Parameters
» arkode_mem — pointer to the ARKODE memory block.

» mlsflag — the value of the last return flag from an ARKLS mass matrix solver interface
function.

Return values
* ARKLS_SUCCESS - the function exited successfully.
* ARKLS_MEM_NULL - arkode_mem was NULL.
e ARKLS_LMEM_NULL - the linear solver memory was NULL.

* ARK_STEPPER_UNSUPPORTED — non-identity mass matrices are not supported by the current
time-stepping module.

5.3. ARKODE User-callable functions 153



User Documentation for ARKODE, v6.2.1

Note

This is only compatible with time-stepping modules that support non-identity mass matrices.

The values of msflag for each of the various solvers will match those described above for the function
ARKodeGetLastLinFlag().

Added in version 6.1.0.

5.3.10.5 General usability functions

The following optional routine may be called by a user to inquire about existing solver parameters. While this would
not typically be called during the course of solving an initial value problem, it may be useful for users wishing to better
understand ARKODE.

Optional routine Function name

Output all ARKODE solver parameters ARKodeliriteParameters()

int ARKodeWriteParameters (void *arkode_mem, FILE *fp)
Outputs all ARKODE solver parameters to the provided file pointer.

Parameters
» arkode_mem — pointer to the ARKODE memory block.
 fp — pointer to use for printing the solver parameters.
Return values
» ARK_SUCCESS - the function exited successfully.
e ARK_MEM_NULL - arkode_mem was NULL.

Note

The fp argument can be stdout or stderr, or it may point to a specific file created using fopen.

When run in parallel, only one process should set a non-NULL value for this pointer, since parameters for
all processes would be identical.

Added in version 6.1.0.

5.3.11 ARKODE reset function

To reset the ARKODE module to a particular state (tg,y(tr)) for the continued solution of a problem, where a prior
call to *StepCreate has been made, the user must call the function ARKodeReset (). Like the stepper-specific
*StepReInit functions, this routine retains the current settings for all solver options and performs no memory al-
locations but, unlike *StepReInit, this routine performs only a subset of the input checking and initializations that
are done in *StepCreate. In particular this routine retains all internal counter values and the step size/error history
and does not reinitialize the linear and/or nonlinear solver but it does indicate that a linear solver setup is necessary
in the next step. Like *StepRelInit, a call to ARKodeReset () will delete any previously-set tstop value specified
via a call to ARKodeSetStopTime (). Following a successful call to ARKodeReset (), call ARKodeEvolve() again

154 Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

to continue solving the problem. By default the next call to ARKodeEvolve () will use the step size computed by
ARKODE prior to calling ARKodeReset (). To set a different step size or have ARKODE estimate a new step size use
ARKodeSetInitStep().

One important use of the ARKodeReset () function is in the treating of jump discontinuities in the RHS functions.
Except in cases of fairly small jumps, it is usually more efficient to stop at each point of discontinuity and restart the
integrator with a readjusted ODE model, using a call to ARKodeReset (). To stop when the location of the discontinuity
is known, simply make that location a value of tout. To stop when the location of the discontinuity is determined by the
solution, use the rootfinding feature. In either case, it is critical that the RHS functions not incorporate the discontinuity,
but rather have a smooth extension over the discontinuity, so that the step across it (and subsequent rootfinding, if used)
can be done efficiently. Then use a switch within the RHS functions (communicated through user_data) that can be
flipped between the stopping of the integration and the restart, so that the restarted problem uses the new values (which
have jumped). Similar comments apply if there is to be a jump in the dependent variable vector.
int ARKodeReset (void *arkode_mem, sunrealtype tR, N_Vector yR)
Resets the current ARKODE time-stepper module state to the provided independent variable value and dependent
variable vector.
Parameters

» arkode_mem — pointer to the ARKODE memory block.

* tR — the value of the independent variable t.

* yR — the value of the dependent variable vector y(tg).

Return values

» ARK_SUCCESS - the function exited successfully.

* ARK_MEM_NULL - arkode_mem was NULL.

e ARK_MEM_FATL - a memory allocation failed.

e ARK_ILL_INPUT - an argument had an illegal value.

Note

By default the next call to ARKodeEvolve () will use the step size computed by ARKODE prior to calling
ARKodeReset (). To set a different step size or have ARKODE estimate a new step size use ARKodeSe-
tInitStep().

All previously set options are retained but may be updated by calling the appropriate “Set” functions.

If an error occurred, ARKodeReset () also sends an error message to the error handler function.

Added in version 6.1.0.

5.3.12 ARKODE system resize function

For simulations involving changes to the number of equations and unknowns in the ODE system (e.g. when using
spatially-adaptive PDE simulations under a method-of-lines approach), the ARKODE integrator may be “resized”
between integration steps, through calls to the ARKodeResize () function. This function modifies ARKODE’s internal
memory structures to use the new problem size, without destruction of the temporal adaptivity heuristics. It is assumed
that the dynamical time scales before and after the vector resize will be comparable, so that all time-stepping heuristics
prior to calling ARKodeResize () remain valid after the call. If instead the dynamics should be recomputed from
scratch, the ARKODE memory structure should be deleted with a call to ARKodeFree (), and recreated with a calls to
*StepCreate.

5.3. ARKODE User-callable functions 155



User Documentation for ARKODE, v6.2.1

To aid in the vector resize operation, the user can supply a vector resize function that will take as input a vector with
the previous size, and transform it in-place to return a corresponding vector of the new size. If this function (of
type ARKVecResizeFn()) is not supplied (i.e., is set to NULL), then all existing vectors internal to ARKODE will
be destroyed and re-cloned from the new input vector.

In the case that the dynamical time scale should be modified slightly from the previous time scale, an input hscale is
allowed, that will rescale the upcoming time step by the specified factor. If a value hscale < 0 is specified, the default
of 1.0 will be used.

int ARKodeResize (void *arkode_mem, N_Vector yR, sunrealtype hscale, sunrealtype tR, ARKVecResizeFn resize,

void *resize data)

Re-sizes ARKODE with a different state vector but with comparable dynamical time scale.

Parameters
» arkode_mem — pointer to the ARKODE memory block.
* yR — the newly-sized state vector, holding the current dependent variable values y(tz).
* hscale - the desired time step scaling factor (i.e. the next step will be of size h*hscale).
* tR — the current value of the independent variable ¢z (this must be consistent with yR).
» resize — the user-supplied vector resize function (of type ARKVecResizeFn().

» resize_data - the user-supplied data structure to be passed to resize when modifying in-
ternal ARKODE vectors.

Return values
» ARK_SUCCESS - the function exited successfully.
e ARK_MEM_NULL - arkode_mem was NULL.
* ARK_NO_MALLOC — arkode_mem was not allocated.
e ARK_ILL_INPUT - an argument had an illegal value.

Note

If an error occurred, ARKodeResize () also sends an error message to the error handler function.

If inequality constraint checking is enabled a call to ARKodeResize () will disable constraint checking. A
call to ARKodeSetConstraints() is required to re-enable constraint checking.

Resizing the linear solver:

When using any of the SUNDIALS-provided linear solver modules, the linear solver memory structures
must also be resized. At present, none of these include a solver-specific “resize” function, so the linear solver
memory must be destroyed and re-allocated following each call to ARKodeResize (). Moreover, the exist-
ing ARKLS interface should then be deleted and recreated by attaching the updated SUNLinearSolver (and
possibly SUNMatrix) object(s) through calls to ARKodeSetLinearSolver (), and ARKodeSetMassLin-
earSolver().

If any user-supplied routines are provided to aid the linear solver (e.g. Jacobian construction, Jacobian-vector
product, mass-matrix-vector product, preconditioning), then the corresponding “set” routines must be called
again following the solver re-specification.

Resizing the absolute tolerance array:

If using array-valued absolute tolerances, the absolute tolerance vector will be invalid after the call to
ARKodeResize (), so the new absolute tolerance vector should be re-set following each call to ARKodeRe-

156

Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

size() through a new call to ARKodeSVtolerances() and possibly ARKodeResVtolerance() if appli-
cable.

If scalar-valued tolerances or a tolerance function was specified through either ARKodeSStolerances() or
ARKodeliFtolerances (), then these will remain valid and no further action is necessary.

Example codes:

e examples/arkode/C_serial/ark_heatl1D_adapt.c

Added in version 6.1.0.

5.3.13 Using an ARKODE solver as an MRIStep “inner” solver

When using an integrator from ARKODE as the inner (fast) integrator with MRIStep, the utility function ARKodeCre-
ateMRIStepInnerStepper () should be used to wrap the ARKODE memory block as an MRIStepInnerStepper.

int ARKodeCreateMRIStepInnerStepper (void *inner_arkode_mem, MRIStepInnerStepper *stepper)
Wraps an ARKODE integrator as an MRIStepInnerStepper for use with MRIStep.

Parameters
» arkode_mem — pointer to the ARKODE memory block.
* stepper - the MRIStepInnerStepper object to create.
Return values
» ARK_SUCCESS - the function exited successfully.
* ARK_MEM_FATL - a memory allocation failed.

* ARK_STEPPER_UNSUPPORTED - the time-stepping module does not currently support use as
an inner stepper.

Note

Currently, ARKODE integrators based on ARKStep, ERKStep, and MRIStep support use as an MRIStep
inner stepper.

Example usage:

/* fast (inner) and slow (outer) ARKODE objects */
void *inner_arkode_mem = NULL;
void *outer_arkode_mem = NULL;

/% MRIStepInnerStepper to wrap the inner (fast) object */
MRIStepInnerStepper stepper = NULL;

/* create an ARKODE object, setting fast (inner) right-hand side
functions and the initial condition */
inner_arkode_mem = *StepCreate(...);

/* configure the inner integrator */
retval = ARKodeSet*(inner_arkode_mem, ...);
(continues on next page)

5.3. ARKODE User-callable functions 157



User Documentation for ARKODE, v6.2.1

(continued from previous page)

/* create MRIStepInnerStepper wrapper for the ARKODE integrator */
flag = ARKodeCreateMRIStepInnerStepper(inner_arkode_mem, &stepper);

/* create an MRIStep object, setting the slow (outer) right-hand side
functions and the initial condition */
outer_arkode_mem = MRIStepCreate(fse, fsi, t®, y0, stepper, sunctx)

5.3.14 Using an ARKODE solver as a SUNStepper

The utility function ARKodeCreateSUNStepper () wraps an ARKODE memory block as a SUNStepper.

int ARKodeCreateSUNStepper (void *inner_arkode_mem, SUNStepper *stepper)

54

Wraps an ARKODE integrator as a SUNStepper.

Parameters
» arkode_mem — pointer to the ARKODE memory block.
* stepper - the SUNStepper object.

Return values
* ARK_SUCCESS — the function exited successfully.
* ARK_MEM_FATL - a memory allocation failed.
e ARK_SUNSTEPPER_ERR — the SUNStepper initialization failed.

Warning

Currently, stepper will be equipped with an implementation for the SUNStepper_SetForcing () function
only if inner_arkode_mem is an ARKStep, ERKStep, or MRIStep integrator.

Added in version 6.2.0.

User-supplied functions

The user-supplied functions for ARKODE consist of:

at least one function defining the ODE (required),

a function that provides the error weight vector (optional),

a function that provides the residual weight vector (optional),

a function that handles explicit time step stability (optional),

a function that updates the implicit stage prediction (optional),

a function that defines auxiliary temporal root-finding problem(s) to solve (optional),

one or two functions that provide Jacobian-related information for the linear solver, if a component is treated
implicitly and a Newton-based nonlinear iteration is chosen (optional),

158

Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

one or two functions that define the preconditioner for use in any of the Krylov iterative algorithms, if linear
systems of equations are to be solved using an iterative method (optional),

if the problem involves a non-identity mass matrix M # I with ARKStep:

— one or two functions that provide mass-matrix-related information for the linear and mass matrix solvers
(required),
— one or two functions that define the mass matrix preconditioner for use if an iterative mass matrix solver is

chosen (optional), and

a function that handles vector resizing operations, if the underlying vector structure supports resizing (as opposed
to deletion/recreation), and if the user plans to call ARKodeResize () (optional).

MRIStep only: functions to be called before and after each inner integration to perform any communication or
memory transfers of forcing data supplied by the outer integrator to the inner integrator, or state data supplied by
the inner integrator to the outer integrator.

if relaxation is enabled (optional), a function that evaluates the conservative or dissipative function &(y(t)) (re-
quired) and a function to evaluate its Jacobian &' (y(t)) (required).

5.4.1 ODE right-hand side

The user must supply at least one function of type ARKRhsFn to specify the IVP-defininig right-hand side function(s)
when creating the ARKODE time-stepping module:

typedef int (*ARKRhsFn)(sunrealtype t, N_Vector y, N_Vector ydot, void *user_data)

These functions compute the ODE right-hand side for a given value of the independent variable ¢ and state vector
Y.

Param t
the current value of the independent variable.

Param y
the current value of the dependent variable vector.

Param ydot
the output vector that forms [a portion of] the ODE RHS f (¢, y).

Param user_data
the user_data pointer that was passed to ARKodeSetUserData().

Return
An ARKRhsFn should return 0 if successful, a positive value if a recoverable error occurred (in
which case ARKODE will attempt to correct), or a negative value if it failed unrecoverably (in
which case the integration is halted and ARK_RHSFUNC_FAIL is returned).

Note

Allocation of memory for ydot is handled within ARKODE.

The vector ydot may be uninitialized on input; it is the user’s responsibility to fill this entire vector with
meaningful values.

A recoverable failure error return from the ARKRAsFn is typically used to flag a value of the dependent vari-
able y that is “illegal” in some way (e.g., negative where only a non-negative value is physically meaningful).
If such a return is made, ARKODE will attempt to recover (possibly repeating the nonlinear iteration, or
reducing the step size in ARKodeEvolve) in order to avoid this recoverable error return. There are some

5.4. User-supplied functions 159



User Documentation for ARKODE, v6.2.1

situations in which recovery is not possible even if the right-hand side function returns a recoverable er-
ror flag. One is when this occurs at the very first call to the ARKRhsFn (in which case ARKODE returns
ARK_FIRST_RHSFUNC_ERR). Another is when a recoverable error is reported by ARKRhsFn after the
time-stepping module completes a successful stage, in which case ARKodeEvolve returns ARK_UNREC_-
RHSFUNC_ERR). Finally, when ARKODE is run in fixed-step mode, it may halt on a recoverable error flag
that would normally have resulted in a stepsize reduction.

5.4.2 Error weight function

As an alternative to providing the relative and absolute tolerances, the user may provide a function of type ARKEwtFn

n

1/2
1
to compute a vector ewt containing the weights in the WRMS norm ||v||w ryms = ( Z (ewt; vi)2> . These
n
i=1
weights will be used in place of those defined in §2.10.
typedef int (*ARKEwWtFn)(N_Vector y, N_Vector ewt, void *user_data)
This function computes the WRMS error weights for the vector y.

Param y
the dependent variable vector at which the weight vector is to be computed.

Param ewt
the output vector containing the error weights.

Param user_data
a pointer to user data, the same as the user_data parameter that was passed to ARKodeSetUser-
Data () function

Return
An ARKEwtFn function must return 0 if it successfully set the error weights, and -1 otherwise.

Note

Allocation of memory for ewt is handled within ARKODE.

The error weight vector must have all components positive. It is the user’s responsibility to perform this test
and return -1 if it is not satisfied.

5.4.3 Residual weight function

Warning

The functions in this section are specific to time-stepping modules that support non-identity mass matrices.

As an alternative to providing the scalar or vector absolute residual tolerances (when the IVP units differ from the
solution units), the user may provide a function of type ARKRwtFn to compute a vector rwt containing the weights

n

1/2
1
in the WRMS norm ||v||wrms = < E (rwt; vi)2> . These weights will be used in place of those defined in
n
i=1

§2.10.

160 Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

typedef int (*ARKRwtFn)(N_Vector y, N_Vector rwt, void *user_data)
This function computes the WRMS residual weights for the vector y.

Param y
the dependent variable vector at which the weight vector is to be computed.

Param rwt
the output vector containing the residual weights.

Param user_data
a pointer to user data, the same as the user_data parameter that was passed to ARKodeSetUser-
Data().

Return
An ARKRwtFn function must return O if it successfully set the residual weights, and -1 otherwise.

Note

Allocation of memory for rwt is handled within ARKODE.

The residual weight vector must have all components positive. It is the user’s responsibility to perform this
test and return -1 if it is not satisfied.

5.4.4 Time step adaptivity function

Warning

The function in this section is only used in now-deprecated functions in ARKStep and ERKStep, and will be
removed in a future release.

As an alternative to using one of the built-in time step adaptivity methods for controlling solution error, the user may
provide a function of type ARKAdaptFn to compute a target step size h for the next integration step. These steps should
be chosen such that the error estimate for the next time step remains below 1.

typedef int (*ARKAdaptFn)(N_Vector y, sunrealtype t, sunrealtype h1, sunrealtype h2, sunrealtype h3, sunrealtype
el, sunrealtype €2, sunrealtype €3, int q, int p, sunrealtype *hnew, void *user_data)

This function implements a time step adaptivity algorithm that chooses h to satisfy the error tolerances.

Param y
the current value of the dependent variable vector.

Param t
the current value of the independent variable.

Param h1l

the current step size, t,, — t,,—1.
Param h2

the previous step size, t,,—1 — tn—2.
Param h3

the step size t,,—2 — t,,—3.

Param el
the error estimate from the current step, n.

5.4. User-supplied functions 161



User Documentation for ARKODE, v6.2.1

Param e2
the error estimate from the previous step, n — 1.

Param e3
the error estimate from the step n — 2.

Param q
the global order of accuracy for the method.

Param p
the global order of accuracy for the embedded method.

Param hnew
the output value of the next step size.

Param user_data
a pointer to user data, the same as the h_data parameter that was passed to ARKStepSetAdap-
tivityFn() or ERKStepSetAdaptivityFn().

Return
An ARKAdaptFn function should return 0 if it successfully set the next step size, and a non-zero
value otherwise.

Deprecated since version 5.7.0: Use the SUNAdaptController infrastructure instead (see §12.1).

5.4.5 Explicit stability function

Warning

The functions in this section are specific to time-stepping modules that support temporal adaptivity.

A user may supply a function to predict the maximum stable step size for an explicit portion of their IVP. While the
accuracy-based time step adaptivity algorithms may be sufficient for retaining a stable solution to the ODE system,
these may be inefficient if the explicit right-hand side function contains moderately stiff terms. In this scenario, a user
may provide a function of type ARKExpStabFn to provide this stability information to ARKODE. This function must
set the scalar step size satisfying the stability restriction for the upcoming time step. This value will subsequently be
bounded by the user-supplied values for the minimum and maximum allowed time step, and the accuracy-based time
step.

typedef int (*ARKExpStabFn)(N_Vector y, sunrealtype t, sunrealtype *hstab, void *user_data)
This function predicts the maximum stable step size for the explicit portion of the ODE system.

Param y
the current value of the dependent variable vector.

Param t
the current value of the independent variable.

Param hstab
the output value with the absolute value of the maximum stable step size.

Param user_data
a pointer to user data, the same as the estab_data parameter that was passed to ARKodeSetSta-
bilityFn(Q).

Return
An ARKExpStabFn function should return O if it successfully set the upcoming stable step size,
and a non-zero value otherwise.

162 Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

Note

If this function is not supplied, or if it returns Astab < 0.0, then ARKODE will assume that there is no explicit
stability restriction on the time step size.

5.4.6 Implicit stage prediction function

A user may supply a function to update the prediction for each implicit stage solution. If supplied, this routine will be
called after any existing ARKODE predictor algorithm completes, so that the predictor may be modified by the user as
desired. In this scenario, a user may provide a function of type ARKStagePredictFn to provide this implicit predictor
to ARKODE. This function takes as input the already-predicted implicit stage solution and the corresponding “time”
for that prediction; it then updates the prediction vector as desired. If the user-supplied routine will construct a full
prediction (and thus the ARKODE prediction is irrelevant), it is recommended that the user not call ARKodeSetPre-
dictorMethod (), thereby leaving the default trivial predictor in place.

typedef int (*ARKStagePredictFn)(sunrealtype t, N_Vector zpred, void *user_data)
This function updates the prediction for the implicit stage solution.
Param t

the current value of the independent variable containing the “time” corresponding to the predicted
solution.

Param zpred
the ARKODE-predicted stage solution on input, and the user-modified predicted stage solution
on output.

Param user_data
a pointer to user data, the same as the user_data parameter that was passed to ARKodeSetUser-
Data().

Return
An ARKStagePredictFn function should return O if it successfully set the upcoming stable step
size, and a non-zero value otherwise.

Note

This may be useful if there are bound constraints on the solution, and these should be enforced prior to
beginning the nonlinear or linear implicit solver algorithm.

This routine is incompatible with the “minimum correction predictor” — option 5 to the routine ARKode-
SetPredictorMethod(). If both are selected, then ARKODE will override its built-in implicit predictor
routine to instead use option O (trivial predictor).

5.4.7 Rootfinding function

If a rootfinding problem is to be solved during integration of the ODE system, the user must supply a function of type
ARKRooOtFn.
typedef int (*ARKRootFn)(sunrealtype t, N_Vector y, sunrealtype *gout, void *user_data)
This function implements a vector-valued function g(¢, y) such that roots are sought for the components g; (¢, ),
1=0,...,nrtfn-1.

Param t
the current value of the independent variable.

5.4. User-supplied functions 163



User Documentation for ARKODE, v6.2.1

Param y
the current value of the dependent variable vector.

Param gout
the output array, of length nrifn, with components g;(¢, y).

Param user_data
a pointer to user data, the same as the user_data parameter that was passed to the SetUserData
function

Return
An ARKRootFn function should return O if successful or a non-zero value if an error occurred
(in which case the integration is halted and ARKODE returns ARK_RTFUNC_FAIL).

Note

Allocation of memory for gout is handled within ARKODE.

5.4.8 Jacobian construction

If a matrix-based linear solver module is used (i.e., a non-NULL SUNMatrix object was supplied to ARKodeSet-
LinearSolver(), the user may provide a function of type ARKLsJacFn to provide the Jacobian approximation or
ARKLsLinSysFn to provide an approximation of the linear system A(¢,y) = M (t) — vJ (¢, y).

typedef int (*ARKLsJacFn)(sunrealtype t, N_Vector y, N_Vector fy, SUNMatrix Jac, void *user_data, N_Vector tmpl,
N_Vector tmp2, N_Vector tmp3)
I
This function computes the Jacobian matrix J(¢,y) = ' (t,y) (or an approximation to it).
Y
Param t
the current value of the independent variable.

Param y
the current value of the dependent variable vector, namely the predicted value of y(t).

Param fy
the current value of the vector f1(¢,y).

Param Jac
the output Jacobian matrix.

Param user_data
a pointer to user data, the same as the user_data parameter that was passed to ARKodeSetUser-

Data().

Param tmp*
pointers to memory allocated to variables of type N_Vector which can be used by an ARKLs-
JacFn as temporary storage or work space.

Return
An ARKLsJacFn function should return 0 if successful, a positive value if a recoverable error oc-
curred (in which case ARKODE will attempt to correct, while ARKLS sets last_flag to ARKLS_-
JACFUNC_RECVR), or a negative value if it failed unrecoverably (in which case the integration
is halted, ARKodeEvolve () returns ARK_LSETUP_FAIL and ARKLS sets last_flag to ARKLS -
JACFUNC_UNRECVR).

164 Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

Note

Information regarding the specific SUNMatrix structure (e.g.~number of rows, upper/lower bandwidth, spar-
sity type) may be obtained through using the implementation-specific SUNMatrix interface functions (see
§9 for details).

When using a linear solver of type SUNLINEARSOLVER_DIRECT, prior to calling the user-supplied Jacobian
function, the Jacobian matrix J (¢, y) is zeroed out, so only nonzero elements need to be loaded into Jac.

With the default Newton nonlinear solver, each call to the user’s ARKLsJacFn () function is preceded by a
call to the implicit ARKRhsFn() user function with the same (¢, y) arguments. Thus, the Jacobian function
can use any auxiliary data that is computed and saved during the evaluation of f7(¢,y). In the case of a
user-supplied or external nonlinear solver, this is also true if the nonlinear system function is evaluated prior
to calling the linear solver setup function (see §11.1.4 for more information).

If the user’s ARKLsJacFn function uses difference quotient approximations, then it may need to access quan-
tities not in the argument list, including the current step size, the error weights, etc. To obtain these, the
user will need to add a pointer to the ark_mem structure to their user_data, and then use the ARKSodeGet*
functions listed in §5.3.10. The unit roundoff can be accessed as SUN_UNIT_ROUNDOFF, which is defined in
the header file sundials_types.h.

dense J(t,y): A user-supplied dense Jacobian function must load the N by N dense matrix Jac with an
approximation to the Jacobian matrix J (¢, y) at the point (¢, y). Utility routines and accessor macros for the
SUNMATRIX_DENSE module are documented in §9.3.

banded J(t,y): A user-supplied banded Jacobian function must load the band matrix Jac with the elements
of the Jacobian J (¢, y) at the point (¢, y). Utility routines and accessor macros for the SUNMATRIX_BAND
module are documented in §9.6.

sparse J(¢,y): A user-supplied sparse Jacobian function must load the compressed-sparse-column (CSC)
or compressed-sparse-row (CSR) matrix Jac with an approximation to the Jacobian matrix J(¢,y) at the
point (¢,y). Storage for Jac already exists on entry to this function, although the user should ensure that
sufficient space is allocated in Jac to hold the nonzero values to be set; if the existing space is insufficient
the user may reallocate the data and index arrays as needed. Utility routines and accessor macros for the
SUNMATRIX_SPARSE type are documented in §9.8.

typedef int (*ARKLsSLinSysFn)(sunrealtype t, N_Vector y, N_Vector fy, SUNMatrix A, SUNMatrix M,
sunbooleantype jok, sunbooleantype *jcur, sunrealtype gamma, void *user_data, N_Vector tmpl, N_Vector tmp2,
N_Vector tmp3)

This function computes the linear system matrix A(¢, y) = M (t) — vJ(¢,y) (or an approximation to it).

Param t
the current value of the independent variable.

Param y
the current value of the dependent variable vector, namely the predicted value of y(t).

Param fy
the current value of the vector f1(¢,y).

Param A
the output linear system matrix.

Param M
the current mass matrix (this input is NULL if M = I).

Param jok
is an input flag indicating whether the Jacobian-related data needs to be updated. The jok argu-
ment provides for the reuse of Jacobian data. When jok = SUNFALSE, the Jacobian-related data

5.4. User-supplied functions 165



User Documentation for ARKODE, v6.2.1

should be recomputed from scratch. When jok = SUNTRUE the Jacobian data, if saved from the
previous call to this function, can be reused (with the current value of gamma). A call with jok
= SUNTRUE can only occur after a call with jok = SUNFALSE.

Param jcur
is a pointer to a flag which should be set to SUNTRUE if Jacobian data was recomputed, or set to
SUNFALSE if Jacobian data was not recomputed, but saved data was still reused.

Param gamma
the scalar ~ appearing in the Newton system matrix A = M (t) — vJ(t,y).

Param user_data
a pointer to user data, the same as the user_data parameter that was passed to ARKodeSetUser-
Data().

Param tmp*
pointers to memory allocated to variables of type N_Vector which can be used by an ARKL-
sLinSysFn as temporary storage or work space.

Return
An ARKLsLinSysFn function should return O if successful, a positive value if a recoverable er-
ror occurred (in which case ARKODE will attempt to correct, while ARKLS sets last_flag to
ARKLS_JACFUNC_RECVR), or a negative value if it failed unrecoverably (in which case the
integration is halted, ARKodeEvolve () returns ARK_LSETUP_FAIL and ARKLS sets last_flag
to ARKLS_JACFUNC_UNRECVR).

5.4.9 Jacobian-vector product

When using a matrix-free linear solver module for the implicit stage solves (i.e., a NULL-valued SUNMATRIX argu-
ment was supplied to ARKodeSetLinearSolver (), the user may provide a function of type ARKLsJacTimesVecFn in
the following form, to compute matrix-vector products Jv. If such a function is not supplied, the default is a difference
quotient approximation to these products.

typedef int (*ARKLsJacTimesVecFn)(N_Vector v, N_Vector Jv, sunrealtype t, N_Vector y, N_Vector fy, void
*user_data, N_Vector tmp)

This function computes the product Jv where J (¢, y) ~ (t,y) (or an approximation to it).

ort
dy
Param v

the vector to multiply.

Param Jv
the output vector computed.

Param t
the current value of the independent variable.

Param y
the current value of the dependent variable vector.

Param fy
the current value of the vector f7(¢,y).

Param user_data
a pointer to user data, the same as the user_data parameter that was passed to ARKodeSetUser-
Data().

166 Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

Param tmp
pointer to memory allocated to a variable of type N_Vector which can be used as temporary
storage or work space.

Return
The value to be returned by the Jacobian-vector product function should be O if successful. Any
other return value will result in an unrecoverable error of the generic Krylov solver, in which case
the integration is halted.

Note

If the user’s ARKLsJacTimesVecFn function uses difference quotient approximations, it may need to access
quantities not in the argument list. These include the current step size, the error weights, etc. To obtain
these, the user will need to add a pointer to the ark_mem structure to their user_data, and then use the
ARKodeGet* functions listed in §5.3.10. The unit roundoff can be accessed as SUN_UNIT_ROUNDOFF, which
is defined in the header file sundials_types.h.

5.4.10 Jacobian-vector product setup
If the user’s Jacobian-times-vector routine requires that any Jacobian-related data be preprocessed or evaluated, then
this needs to be done in a user-supplied function of type ARKLsJacTimesSetupFn, defined as follows:

typedef int (*ARKLsJacTimesSetupFn)(sunrealtype t, N_Vector 'y, N_Vector fy, void *user_data)

This function preprocesses and/or evaluates any Jacobian-related data needed by the Jacobian-times-vector rou-

tine.

Param t
the current value of the independent variable.

Param y
the current value of the dependent variable vector.

Param fy
the current value of the vector f7(¢,y).

Param user_data
a pointer to user data, the same as the user_data parameter that was passed to ARKodeSetUser-
Data().

Return
The value to be returned by the Jacobian-vector setup function should be 0 if successful, positive
for a recoverable error (in which case the step will be retried), or negative for an unrecoverable
error (in which case the integration is halted).

Note

Each call to the Jacobian-vector setup function is preceded by a call to the implicit ARKRhsFn user function
with the same (¢, y) arguments. Thus, the setup function can use any auxiliary data that is computed and
saved during the evaluation of the implicit ODE right-hand side.

If the user’s ARKLsJacTimesSetupFn function uses difference quotient approximations, it may need to
access quantities not in the argument list. These include the current step size, the error weights, etc. To
obtain these, the user will need to add a pointer to the ark_mem structure to their user_data, and then use
the ARKodeGet* functions listed in §5.3.10. The unit roundoff can be accessed as SUN_UNIT_ROUNDOFF,
which is defined in the header file sundials_types.h.

5.4. User-supplied functions 167



User Documentation for ARKODE, v6.2.1

5.4.11 Preconditioner solve

If a user-supplied preconditioner is to be used with a SUNLinSol solver module, then the user must provide a function
of type ARKLsPrecSolveFn to solve the linear system Pz = r, where P corresponds to either a left or right precon-
ditioning matrix. Here P should approximate (at least crudely) the Newton matrix A(t,y) = M (t) — vJ(t,y), where

o 1
M (t) is the mass matrix and J(t,y) = ai(t, y) If preconditioning is done on both sides, the product of the two
Y

preconditioner matrices should approximate A.

typedef int (*ARKLsPrecSolveFn)(sunrealtype t, N_Vector y, N_Vector £y, N_Vector r, N_Vector z, sunrealtype
gamma, sunrealtype delta, int Ir, void *user_data)

This function solves the preconditioner system Pz = r.

Param t
the current value of the independent variable.

Param y
the current value of the dependent variable vector.

Param fy
the current value of the vector f7(t,y).

Param r
the right-hand side vector of the linear system.

Param z
the computed output solution vector.

Param gamma
the scalar -y appearing in the Newton matrix given by A = M (t) — ~vJ(t,y).

Param delta
an input tolerance to be used if an iterative method is employed in the solution. In that case, the
residual vector Res = r — Pz of the system should be made to be less than delta in the weighted

n 1/2

o norm, i.e. Z (Res; * ewti)2 < §, where 6 = delta. To obtain the N_Vector ewt, call

i=1
ARKodeGetErriieights ().

Param Ir
an input flag indicating whether the preconditioner solve is to use the left preconditioner (Ir = 1)
or the right preconditioner (Ir = 2).

Param user_data
a pointer to user data, the same as the user_data parameter that was passed to ARKodeSetUser-
Data().

Return
The value to be returned by the preconditioner solve function is a flag indicating whether it was
successful. This value should be 0 if successful, positive for a recoverable error (in which case
the step will be retried), or negative for an unrecoverable error (in which case the integration is
halted).

168 Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

5.4.12 Preconditioner setup

If the user’s preconditioner routine above requires that any data be preprocessed or evaluated, then these actions need
to occur within a user-supplied function of type ARKLsPrecSetupFn.

typedef int (*ARKLsPrecSetupFn)(sunrealtype t, N_Vector y, N_Vector ty, sunbooleantype jok, sunbooleantype
*jcurPtr, sunrealtype gamma, void *user_data)

This function preprocesses and/or evaluates Jacobian-related data needed by the preconditioner.

Param t
the current value of the independent variable.

Param y
the current value of the dependent variable vector.

Param fy
the current value of the vector f7(t,y).

Param jok
is an input flag indicating whether the Jacobian-related data needs to be updated. The jok argu-
ment provides for the reuse of Jacobian data in the preconditioner solve function. When jok =
SUNFALSE, the Jacobian-related data should be recomputed from scratch. When jok = SUNTRUE
the Jacobian data, if saved from the previous call to this function, can be reused (with the current
value of gamma). A call with jok = SUNTRUE can only occur after a call with jok = SUNFALSE.

Param jcurPtr
is a pointer to a flag which should be set to SUNTRUE if Jacobian data was recomputed, or set to
SUNFALSE if Jacobian data was not recomputed, but saved data was still reused.

Param gamma
the scalar -y appearing in the Newton matrix given by A = M (t) — vJ (¢, y).

Param user_data
a pointer to user data, the same as the user_data parameter that was passed to ARKodeSetUser-
Data().

Return
The value to be returned by the preconditioner setup function is a flag indicating whether it was
successful. This value should be 0 if successful, positive for a recoverable error (in which case
the step will be retried), or negative for an unrecoverable error (in which case the integration is
halted).

Note

The operations performed by this function might include forming a crude approximate Jacobian, and per-
forming an LU factorization of the resulting approximation to A = M (¢) — vJ (¢, y).

With the default nonlinear solver (the native SUNDIALS Newton method), each call to the preconditioner
setup function is preceded by a call to the implicit ARKRhsFn user function with the same (¢, y) arguments.
Thus, the preconditioner setup function can use any auxiliary data that is computed and saved during the
evaluation of the implicit ODE right-hand side. In the case of a user-supplied or external nonlinear solver,
this is also true if the nonlinear system function is evaluated prior to calling the linear solver setup function
(see §11.1.4 for more information).

This function is not called in advance of every call to the preconditioner solve function, but rather is called
only as often as needed to achieve convergence in the Newton iteration.

If the user’s ARKLsPrecSetupFn function uses difference quotient approximations, it may need to access
quantities not in the call list. These include the current step size, the error weights, etc. To obtain these, the

5.4. User-supplied functions 169



User Documentation for ARKODE, v6.2.1

user will need to add a pointer to the ark_mem structure to their user_data, and then use the ARKodeGet*
functions listed in §5.3.10. The unit roundoff can be accessed as SUN_UNIT_ROUNDOFF, which is defined in
the header file sundials_types.h.

5.4.13 Mass matrix construction

For problems involving a non-identity mass matrix, if a matrix-based mass-matrix linear solver is used (i.e., a non-
NULL SUNMATRIX was supplied to ARKodeSetlMassLinearSolver (), the user must provide a function of type
ARKLsMassFn to provide the mass matrix approximation.

typedef int (*ARKLsMassFn)(sunrealtype t, SUNMatrix M, void *user_data, N_Vector tmpl, N_Vector tmp2,
N_Vector tmp3)

This function computes the mass matrix M (¢) (or an approximation to it).

Param t
the current value of the independent variable.

Param M
the output mass matrix.

Param user_data
a pointer to user data, the same as the user_data parameter that was passed to ARKodeSetUser-
Data().

Param tmp1*
pointers to memory allocated to variables of type N_Vector which can be used by an ARKLs-
MassFn as temporary storage or work space.

Return
An ARKLsMassFn function should return O if successful, or a negative value if it failed unrecover-
ably (in which case the integration is halted, ARKodeEvolve () returns ARK_MASSSETUP_FAIL
and ARKLS sets last_flag to ARKLS_MASSFUNC_UNRECVR).

Note

Information regarding the structure of the specific SUNMatrix structure (e.g.~number of rows, upper/lower
bandwidth, sparsity type) may be obtained through using the implementation-specific SUNMatrix interface
functions (see §9 for details).

Prior to calling the user-supplied mass matrix function, the mass matrix M (t) is zeroed out, so only nonzero
elements need to be loaded into M.

dense M (t): A user-supplied dense mass matrix function must load the N by N dense matrix M with an
approximation to the mass matrix M (t). Utility routines and accessor macros for the SUNMATRIX_DENSE
module are documented in §9.3.

banded M (t): A user-supplied banded mass matrix function must load the band matrix M with the elements
of the mass matrix M (t). Utility routines and accessor macros for the SUNMATRIX_BAND module are
documented in §9.6.

sparse M (t): A user-supplied sparse mass matrix function must load the compressed-sparse-column (CSR)
or compressed-sparse-row (CSR) matrix M with an approximation to the mass matrix M (t). Storage for M
already exists on entry to this function, although the user should ensure that sufficient space is allocated in
M to hold the nonzero values to be set; if the existing space is insufficient the user may reallocate the data

170

Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

and row index arrays as needed. Utility routines and accessor macros for the SUNMATRIX_SPARSE type
are documented in §9.8.

5.4.14 Mass matrix-vector product

For problems involving a non-identity mass matrix, if a matrix-free linear solver is to be used for mass-matrix linear
systems (i.e., a NULL-valued SUNMATRIX argument was supplied to ARKodeSetMassLinearSolver() in §5.2),
the user must provide a function of type ARKLsMassTimesVecFn in the following form, to compute matrix-vector
products M (t) v.

typedef int (*ARKLsMassTimesVecFn)(N_Vector v, N_Vector Mv, sunrealtype t, void *mtimes_data)

This function computes the product M (¢) v (or an approximation to it).

Param v
the vector to multiply.

Param Mv
the output vector computed.

Param t
the current value of the independent variable.

Param mtimes_data
a pointer to user data, the same as the mtimes_data parameter that was passed to ARKodeSet-
MassTimes().

Return
The value to be returned by the mass-matrix-vector product function should be 0 if successful.
Any other return value will result in an unrecoverable error of the generic Krylov solver, in which
case the integration is halted.

5.4.15 Mass matrix-vector product setup

For problems involving a non-identity mass matrix and a matrix-free linear solver, if the user’s mass-matrix-times-
vector routine requires that any mass matrix-related data be preprocessed or evaluated, then this needs to be done in a
user-supplied function of type ARKLsMassTimesSetupFn, defined as follows:

typedef int (*ARKLsMassTimesSetupFn)(sunrealtype t, void *mtimes_data)

This function preprocesses and/or evaluates any mass-matrix-related data needed by the mass-matrix-times-
vector routine.

Param t
the current value of the independent variable.

Param mtimes_data
a pointer to user data, the same as the mtimes_data parameter that was passed to ARKodeSet-
MassTimes().

Return
The value to be returned by the mass-matrix-vector setup function should be 0 if successful.
Any other return value will result in an unrecoverable error of the ARKLS mass matrix solver
interface, in which case the integration is halted.

5.4. User-supplied functions 171



User Documentation for ARKODE, v6.2.1

5.4.16 Mass matrix preconditioner solve

For problems involving a non-identity mass matrix and an iterative linear solver, if a user-supplied preconditioner is to
be used with a SUNLINEAR solver module for mass matrix linear systems, then the user must provide a function of
type ARKLsMassPrecSolveFn to solve the linear system Pz = r, where P may be either a left or right preconditioning
matrix. Here P should approximate (at least crudely) the mass matrix M (¢). If preconditioning is done on both sides,
the product of the two preconditioner matrices should approximate M (t).

typedef int (*ARKLsMassPrecSolveFn)(sunrealtype t, N_Vector t, N_Vector z, sunrealtype delta, int Ir, void
*user_data)

This function solves the preconditioner system Pz = r.

Param t
the current value of the independent variable.

Param r
the right-hand side vector of the linear system.

Param z
the computed output solution vector.

Param delta
an input tolerance to be used if an iterative method is employed in the solution. In that case, the
residual vector Res = r — Pz of the system should be made to be less than delfa in the weighted

n 1/2

o norm, i.e. Z (Res; * ewti)2 < 6, where § = delta. To obtain the N_Vector ewt, call

i=1
ARKodeGetErriieights ().

Param Ir
an input flag indicating whether the preconditioner solve is to use the left preconditioner (Ir = 1)
or the right preconditioner (Ir = 2).

Param user_data
a pointer to user data, the same as the user_data parameter that was passed to ARKodeSetUser-
Data().

Return
The value to be returned by the preconditioner solve function is a flag indicating whether it was
successful. This value should be 0 if successful, positive for a recoverable error (in which case
the step will be retried), or negative for an unrecoverable error (in which case the integration is
halted).

5.4.17 Mass matrix preconditioner setup

For problems involving a non-identity mass matrix and an iterative linear solver, if the user’s mass matrix preconditioner
above requires that any problem data be preprocessed or evaluated, then these actions need to occur within a user-
supplied function of type ARKLsMassPrecSetupFn.

typedef int (*ARKLsMassPrecSetupFn)(sunrealtype t, void *user_data)
This function preprocesses and/or evaluates mass-matrix-related data needed by the preconditioner.

Param t
the current value of the independent variable.

Param user_data
a pointer to user data, the same as the user_data parameter that was passed to ARKodeSetUser-
Data().

172 Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

Return
The value to be returned by the mass matrix preconditioner setup function is a flag indicating
whether it was successful. This value should be 0 if successful, positive for a recoverable error
(in which case the step will be retried), or negative for an unrecoverable error (in which case the
integration is halted).

Note

The operations performed by this function might include forming a mass matrix and performing an incom-
plete factorization of the result. Although such operations would typically be performed only once at the
beginning of a simulation, these may be required if the mass matrix can change as a function of time.

If both this function and a ARKLsMassTimesSetupFn are supplied, all calls to this function will be preceded
by a call to the ARKLsMassTimesSetupFn, so any setup performed there may be reused.

5.4.18 Vector resize function

For simulations involving changes to the number of equations and unknowns in the ODE system (e.g. when using
spatial adaptivity in a PDE simulation), the ARKODE integrator may be “resized” between integration steps, through
calls to the ARKodeResize () function. Typically, when performing adaptive simulations the solution is stored in a
customized user-supplied data structure, to enable adaptivity without repeated allocation/deallocation of memory. In
these scenarios, it is recommended that the user supply a customized vector kernel to interface between SUNDIALS
and their problem-specific data structure. If this vector kernel includes a function of type ARKVecResizeFn to resize
a given vector implementation, then this function may be supplied to ARKodeResize () so that all internal ARKODE
vectors may be resized, instead of deleting and re-creating them at each call. This resize function should have the
following form:

typedef int (*ARKVecResizeFn)(N_Vector y, N_Vector ytemplate, void *user_data)

This function resizes the vector y to match the dimensions of the supplied vector, ytemplate.

Param y
the vector to resize.

Param ytemplate
a vector of the desired size.

Param user_data
apointer to user data, the same as the resize_data parameter that was passed to ARKodeResize ().

Return
An ARKVecResizeFn function should return O if it successfully resizes the vector y, and a non-
zero value otherwise.

Note

If this function is not supplied, then ARKODE will instead destroy the vector y and clone a new vector y off
of ytemplate.

5.4. User-supplied functions 173



User Documentation for ARKODE, v6.2.1

5.4.19 Pre inner integrator communication function (MRIStep only)

The user may supply a function of type MRIStepPreInnerFn that will be called before each inner integration to
perform any communication or memory transfers of forcing data supplied by the outer integrator to the inner integrator
for the inner integration.

typedef int (*MRIStepPreInnerFn)(sunrealtype t, N_Vector *f, int num_vecs, void *user_data)

Param t
the current value of the independent variable.

Param f
an N_Vector array of outer forcing vectors.

Param num_vecs
the number of vectors in the N_Vector array.

Param user_data
the user_data pointer that was passed to MRIStepSetUserData().

Return
An MRIStepPrelnnerFn function should return O if successful, a positive value if a recoverable
error occurred, or a negative value if an unrecoverable error occurred. As the MRIStep module
only supports fixed step sizes at this time any non-zero return value will halt the integration.

Note

In a heterogeneous computing environment if any data copies between the host and device vector data are
necessary, this is where that should occur.

5.4.20 Post inner integrator communication function (MRIStep only)

The user may supply a function of type MRIStepPostInnerFn that will be called after each inner integration to
perform any communication or memory transfers of state data supplied by the inner integrator to the outer integrator
for the outer integration.

typedef int (*MRIStepPostInnerFn)(sunrealtype t, N_Vector 'y, void *user_data)

Param t
the current value of the independent variable.

Param y
the current value of the dependent variable vector.

Param user_data
the user_data pointer that was passed to MRIStepSetUserData().

Return
An MRIStepPostInnerFn() function should return O if successful, a positive value if a recov-
erable error occurred, or a negative value if an unrecoverable error occurred. As the MRIStep
module only supports fixed step sizes at this time any non-zero return value will halt the integra-
tion.

Note

174 Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

In a heterogeneous computing environment if any data copies between the host and device vector data are
necessary, this is where that should occur.

5.4.21 Relaxation function

typedef int (*ARKRelaxFn)(N_Vector y, sunrealtype *r, void *user_data)

When applying relaxation, an ARKRelaxFn() function is required to compute the conservative or dissipative
function &(y).

Param y
the current value of the dependent variable vector.

Param r
the value of £(y).

Param user_data
the user_data pointer that was passed to ARKodeSetUserData().

Return
An ARKRelaxFn () function should return 0 if successful, a positive value if a recoverable error
occurred, or a negative value if an unrecoverable error occurred. If a recoverable error occurs,
the step size will be reduced and the step repeated.

5.4.22 Relaxation Jacobian function

typedef int (*ARKRelaxJacFn)(N_Vector y, N_Vector J, void *user_data);

When applying relaxation, an ARKRelaxJacFn() function is required to compute the Jacobian &’(y) of the
ARKRelaxFn() &(y).

Param y
the current value of the dependent variable vector.

Param J
the Jacobian vector &' (y).

Param user_data
the user_data pointer that was passed to ARKodeSetUserData().

Return
An ARKRelaxJacFn() function should return O if successful, a positive value if a recoverable
error occurred, or a negative value if an unrecoverable error occurred. If a recoverable error
occurs, the step size will be reduced and the step repeated.

5.5 Relaxation Methods

This section describes user-callable functions for applying relaxation methods with ARKODE. For more information
on relaxation Runge—Kutta methods see §2.18.

Warning

Relaxation support as not been evaluated with non-identity mass matrices. While this usage mode is supported,
feedback from users who explore this combination would be appreciated.

5.5. Relaxation Methods 175



User Documentation for ARKODE, v6.2.1

5.5.1 Enabling or Disabling Relaxation

int ARKodeSetRelaxFn(void *arkode_mem, ARKRelaxFn rfn, ARKRelaxJacFn rjac)

Attaches the user supplied functions for evaluating the relaxation function (rfn) and its Jacobian (rjac).

Both rfn and rjac are required and an error will be returned if only one of the functions is NULL. If both rfn
and rjac are NULL, relaxation is disabled.

With DIRK and IMEX-ARK methods or when a fixed mass matrix is present, applying relaxation requires allo-
cating s additional state vectors (where s is the number of stages in the method).

Parameters

» arkode_mem — the ARKODE memory structure

 rfn - the user-defined function to compute the relaxation function &(y)

* rjac - the user-defined function to compute the relaxation Jacobian &'(y)
Return values

* ARK_SUCCESS - the function exited successfully

e ARK_MEM_NULL - arkode_mem was NULL

e ARK_ILL_INPUT - an invalid input combination was provided (see the output error message
for more details)

* ARK_MEM_FAIL — a memory allocation failed

Warning

Applying relaxation requires using a method of at least second order with b¥ > 0 and b/ > 0. If these
conditions are not satisfied, ARKodeEvolve () will return with an error during initialization.

Note

When combined with fixed time step sizes, ARKODE will attempt each step using the specified step size. If
the step is successful, relaxation will be applied, effectively modifying the step size for the current step. If
the step fails or applying relaxation fails, ARKodeEvolve () will return with an error.

Added in version 6.1.0.

5.5.2 Optional Input Functions

This section describes optional input functions used to control applying relaxation.

int ARKodeSetRelaxEtaFail (void *arkode_mem, sunrealtype eta_rf)

Sets the step size reduction factor applied after a failed relaxation application.
The default value is 0.25. Input values < 0 or > 1 will result in the default value being used.
Parameters
» arkode_mem — the ARKODE memory structure

» eta_rf - the step size reduction factor

176 Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

Return values
* ARK_SUCCESS — the value was successfully set
e ARK_MEM_NULL - arkode_mem was NULL
e ARK_RELAX_MEM_NULL - the internal relaxation memory structure was NULL
Added in version 6.1.0.

int ARKodeSetRelaxLowerBound (void *arkode_mem, sunrealtype lower)
Sets the smallest acceptable value for the relaxation parameter.

Values smaller than the lower bound will result in a failed relaxation application and the step will be repeated
with a smaller step size (determined by ARKodeSetRelaxEtaFail()).

The default value is 0.8. Input values < 0 or > 1 will result in the default value being used.
Parameters
» arkode_mem — the ARKODE memory structure
* lower — the relaxation parameter lower bound
Return values
* ARK_SUCCESS — the value was successfully set
e ARK_MEM_NULL - arkode_mem was NULL
e ARK_RELAX_MEM_NULL - the internal relaxation memory structure was NULL
Added in version 6.1.0.

int ARKodeSetRelaxUpperBound (void *arkode_mem, sunrealtype upper)
Sets the largest acceptable value for the relaxation parameter.

Values larger than the upper bound will result in a failed relaxation application and the step will be repeated with
a smaller step size (determined by ARKodeSetRelaxEtaFail()).

The default value is 1.2. Input values < 1 will result in the default value being used.
Parameters
» arkode_mem — the ARKODE memory structure
* upper - the relaxation parameter upper bound
Return values
* ARK_SUCCESS — the value was successfully set
* ARK_MEM_NULL — arkode_mem was NULL
e ARK_RELAX_MEM_NULL - the internal relaxation memory structure was NULL
Added in version 6.1.0.

int ARKodeSetRelaxMaxFails (void *arkode_mem, int max_fails)
Sets the maximum number of times applying relaxation can fail within a step attempt before the integration is
halted with an error.

The default value is 10. Input values < 0 will result in the default value being used.
Parameters
* arkode_mem — the ARKODE memory structure

» max_fails - the maximum number of failed relaxation applications allowed in a step

5.5. Relaxation Methods 177



User Documentation for ARKODE, v6.2.1

Return values
* ARK_SUCCESS — the value was successfully set
e ARK_MEM_NULL - arkode_mem was NULL
e ARK_RELAX_MEM_NULL - the internal relaxation memory structure was NULL
Added in version 6.1.0.

int ARKodeSetRelaxMaxIters (void *arkode_mem, int max_iters)

Sets the maximum number of nonlinear iterations allowed when solving for the relaxation parameter.

If the maximum number of iterations is reached before meeting the solve tolerance (determined by ARKodeSe-
tRelaxResTol () and ARKodeSetRelaxTol()), the step will be repeated with a smaller step size (determined
by ARKodeSetRelaxEtaFail()).

The default value is 10. Input values < 0 will result in the default value being used.
Parameters
» arkode_mem — the ARKODE memory structure
* max_iters — the maximum number of solver iterations allowed
Return values
* ARK_SUCCESS - the value was successfully set
* ARK_MEM_NULL — arkode_mem was NULL
* ARK_RELAX_MEM_NULL — the internal relaxation memory structure was NULL
Added in version 6.1.0.

int ARKodeSetRelaxSolver (void *arkode_mem, ARKRelaxSolver solver)

Sets the nonlinear solver method used to compute the relaxation parameter.
The default value is ARK_RELAX_NEWTON.
Parameters
* arkode_mem — the ARKODE memory structure
* solver - the nonlinear solver to use: ARK_RELAX_BRENT or ARK_RELAX_NEWTON
Return values
* ARK_SUCCESS - the value was successfully set
* ARK_MEM_NULL — arkode_mem was NULL
e ARK_RELAX MEM_NULL - the internal relaxation memory structure was NULL
e ARK_ILL_INPUT - an invalid solver option was provided
Added in version 6.1.0.

int ARKodeSetRelaxResTol (void *arkode_mem, sunrealtype res_tol)
Sets the nonlinear solver residual tolerance to use when solving (2.63).
If the residual or iteration update tolerance (see ARKodeSetRelaxMaxIters()) is not reached within the max-

imum number of iterations (determined by ARKodeSetRelaxMaxIters()), the step will be repeated with a
smaller step size (determined by ARKodeSetRelaxEtaFail()).

The default value is 4¢ where € is floating-point precision. Input values < 0 will result in the default value being
used.

178 Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

Parameters
* arkode_mem — the ARKODE memory structure
» res_tol - the nonlinear solver residual tolerance to use
Return values
* ARK_SUCCESS — the value was successfully set
e ARK_MEM_NULL - arkode_mem was NULL
e ARK_RELAX MEM_NULL - the internal relaxation memory structure was NULL
Added in version 6.1.0.

int ARKodeSetRelaxTol (void *arkode_mem, sunrealtype rel_tol, sunrealtype abs_tol)
Sets the nonlinear solver relative and absolute tolerance on changes in r iterates when solving (2.63).

If the residual (see ARKodeSetRelaxResTol ()) or iterate update tolerance is not reached within the maximum
number of iterations (determined by ARKodeSetRelaxMaxIters()), the step will be repeated with a smaller
step size (determined by ARKodeSetRelaxEtaFail()).

The default relative and absolute tolerances are 4e and 10~14, respectively, where € is floating-point precision.
Input values < 0 will result in the default value being used.

Parameters
» arkode_mem — the ARKODE memory structure
» rel_tol - the nonlinear solver relative solution tolerance to use
* abs_tol - the nonlinear solver absolute solution tolerance to use
Return values
* ARK_SUCCESS - the value was successfully set
e ARK_MEM_NULL - arkode_mem was NULL
e ARK_RELAX MEM_NULL - the internal relaxation memory structure was NULL
Added in version 6.1.0.

5.5.3 Optional Output Functions
This section describes optional output functions used to retrieve information about the performance of the relaxation
method.

int ARKodeGetNumRelaxFnEvals (void *arkode_mem, long int *r_evals)

Get the number of times the user’s relaxation function was evaluated.
Parameters
* arkode_mem — the ARKODE memory structure
» r_evals — the number of relaxation function evaluations
Return values
* ARK_SUCCESS - the value was successfully set
e ARK_MEM_NULL - arkode_mem was NULL
e ARK_RELAX_ MEM_NULL - the internal relaxation memory structure was NULL
Added in version 6.1.0.

5.5. Relaxation Methods 179



User Documentation for ARKODE, v6.2.1

int ARKodeGetNumRelaxJacEvals (void *arkode_mem, long int *J_evals)

Get the number of times the user’s relaxation Jacobian was evaluated.
Parameters
* arkode_mem — the ARKODE memory structure
* J_evals - the number of relaxation Jacobian evaluations
Return values
* ARK_SUCCESS — the value was successfully set
* ARK_MEM_NULL — arkode_mem was NULL
e ARK_RELAX MEM_NULL - the internal relaxation memory structure was NULL
Added in version 6.1.0.

int ARKodeGetNumRelaxFails(void *arkode_mem, long int *fails)

Get the total number of times applying relaxation failed.

The counter includes the sum of the number of nonlinear solver failures (see ARKodeGetNumRelaxSolve-
Fails()) and the number of failures due an unacceptable relaxation value (see ARKodeSetRelaxLower-
Bound () and ARKodeSetRelaxUpperBound()).

Parameters
* arkode_mem — the ARKODE memory structure
» fails - the total number of failed relaxation attempts
Return values
* ARK_SUCCESS - the value was successfully set
* ARK_MEM_NULL — arkode_mem was NULL
e ARK_RELAX_ MEM_NULL - the internal relaxation memory structure was NULL
Added in version 6.1.0.

int ARKodeGetNumRelaxBoundFails (void *arkode_mem, long int *fails)

Get the number of times the relaxation parameter was deemed unacceptable.
Parameters
» arkode_mem — the ARKODE memory structure
e fails - the number of failures due to an unacceptable relaxation parameter value
Return values
* ARK_SUCCESS — the value was successfully set
* ARK_MEM_NULL — arkode_mem was NULL
* ARK_RELAX_MEM_NULL — the internal relaxation memory structure was NULL
Added in version 6.1.0.

int ARKodeGetNumRelaxSolveFails (void *arkode_mem, long int *fails)
Get the number of times the relaxation parameter nonlinear solver failed.

Parameters

» arkode_mem — the ARKODE memory structure

180 Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

» fails — the number of relaxation nonlinear solver failures
Return values
* ARK_SUCCESS — the value was successfully set
e ARK_MEM_NULL - arkode_mem was NULL
e ARK_RELAX MEM_NULL - the internal relaxation memory structure was NULL
Added in version 6.1.0.
int ARKodeGetNumRelaxSolveIters (void *arkode_mem, long int *iters)
Get the number of relaxation parameter nonlinear solver iterations.
Parameters
» arkode_mem — the ARKODE memory structure
* iters — the number of relaxation nonlinear solver iterations
Return values
* ARK_SUCCESS - the value was successfully set
e ARK_MEM_NULL - arkode_mem was NULL
e ARK_RELAX MEM_NULL - the internal relaxation memory structure was NULL
Added in version 6.1.0.

5.6 Preconditioner modules

The efficiency of Krylov iterative methods for the solution of linear systems can be greatly enhanced through precon-
ditioning. For problems in which the user cannot define a more effective, problem-specific preconditioner, ARKODE
provides two internal preconditioner modules: a banded preconditioner for serial and threaded problems (ARKBAND-
PRE) and a band-block-diagonal preconditioner for parallel problems (ARKBBDPRE).

5.6.1 A serial banded preconditioner module

This preconditioner provides a band matrix preconditioner for use with iterative SUNLINSOL modules in a serial or
threaded setting. It requires that the problem be set up using either the NVECTOR_SERIAL, NVECTOR_OPENMP
or NVECTOR_PTHREADS module, due to data access patterns. It also currently requires that the problem involve an
identity mass matrix, i.e., M = I.

This module uses difference quotients of the ODE right-hand side function f' to generate a band matrix of bandwidth
ml + mu + 1, where the number of super-diagonals (mu, the upper half-bandwidth) and sub-diagonals (m1, the lower

half-bandwidth) are specified by the user. This band matrix is used to to form a preconditioner the Krylov linear solver.
I

Although this matrix is intended to approximate the Jacobian J = D0 it may be a very crude approximation, since

the true Jacobian may not be banded, or its true bandwidth may be larger thanml + mu + 1. However, as long as the
banded approximation generated for the preconditioner is sufficiently accurate, it may speed convergence of the Krylov
iteration.

5.6. Preconditioner modules 181



User Documentation for ARKODE, v6.2.1

5.6.1.1 ARKBANDPRE usage

In order to use the ARKBANDPRE module, the user need not define any additional functions. In addition to the header
files required for the integration of the ODE problem (see §5.1), to use the ARKBANDPRE module, the user’s program
must include the header file arkode_bandpre.h which declares the needed function prototypes. The following is a
summary of the usage of this module. Steps that are unchanged from the skeleton program presented in §5.2 are
italicized.

1. Initialize multi-threaded environment (if appropriate)
2. Create the SUNDIALS simulation context object.

3. Set problem dimensions

4. Set vector of initial values

5. Create ARKODE object

6. Specify integration tolerances

7. Create iterative linear solver object

When creating the iterative linear solver object, specify the type of preconditioning (SUN_PREC_LEFT or SUN_-
PREC_RIGHT) to use.

8. Set linear solver optional inputs
9. Attach linear solver module
10. Initialize the ARKBANDPRE preconditioner module
Specify the upper and lower half-bandwidths (mu and m1, respectively) and call
ier = ARKBandPrecInit(arkode_mem, N, mu, ml);
to allocate memory and initialize the internal preconditioner data.
11. Create nonlinear solver object
12. Attach nonlinear solver module
13. Set nonlinear solver optional inputs
14. Set optional inputs

Note that the user should not call ARKodeSetPreconditioner() as it will overwrite the preconditioner setup
and solve functions.

15. Specify rootfinding problem
16. Advance solution in time
17. Get optional outputs

Additional optional outputs associated with ARKBANDPRE are available by way of the two routines described
below, ARKBandPrecGetWorkSpace () and ARKBandPrecGetNumRhsEvals ().

18. Deallocate memory for solution vector
19. Free solver memory
20. Free linear solver memory

21. Free nonlinear solver memory

182 Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

5.6.1.2 ARKBANDPRE user-callable functions

The ARKBANDPRE preconditioner module is initialized and attached by calling the following function:

int ARKBandPrecInit (void *arkode_mem, sunindextype N, sunindextype mu, sunindextype ml)
Initializes the ARKBANDPRE preconditioner and allocates required (internal) memory for it.

Parameters
» arkode_mem — pointer to the ARKODE memory block.
* N - problem dimension (size of ODE system).
e mu — upper half-bandwidth of the Jacobian approximation.
» ml - lower half-bandwidth of the Jacobian approximation.
Return values
* ARKLS_SUCCESS - the function exited successfully.
* ARKLS_MEM_NULL - arkode_mem was NULL.
* ARKLS_LMEM_NULL — the linear solver memory was NULL.
e ARKLS_ILL_INPUT - an input had an illegal value.
e ARKLS_MEM_FAIL — a memory allocation request failed.

Note

The banded approximate Jacobian will have nonzero elements only in locations (4, j) with ml < j —i < mu.

The following two optional output functions are available for use with the ARKBANDPRE module:

int ARKBandPrecGetWorkSpace (void *arkode_mem, long int *lenrwLS, long int *leniwLS)
Returns the sizes of the ARKBANDPRE real and integer workspaces.

Parameters

» arkode_mem — pointer to the ARKODE memory block.

* lenrwLS - the number of sunrealtype values in the ARKBANDPRE workspace.

* leniwLS - the number of integer values in the ARKBANDPRE workspace.
Return values

* ARKLS_SUCCESS - the function exited successfully.

* ARKLS_MEM_NULL - arkode_mem was NULL.

e ARKLS_LMEM_NULL - the linear solver memory was NULL.

* ARKLS_PMEM_NULL - the preconditioner memory was NULL.

Note

The workspace requirements reported by this routine correspond only to memory allocated within the ARK-
BANDPRE module (the banded matrix approximation, banded SUNLinearSolver object, and temporary
vectors).

5.6. Preconditioner modules 183



User Documentation for ARKODE, v6.2.1

The workspaces referred to here exist in addition to those given by the corresponding function
ARKodeGetLinliorkSpace().

int ARKBandPrecGetNumRhsEvals (void *arkode_mem, long int *nfevalsBP)

Returns the number of calls made to the user-supplied right-hand side function f for constructing the finite-
difference banded Jacobian approximation used within the preconditioner setup function.

Parameters
» arkode_mem — pointer to the ARKODE memory block.
+ nfevalsBP — number of calls to f7.
Return values
* ARKLS_SUCCESS - the function exited successfully.
* ARKLS_MEM_NULL - arkode_mem was NULL.
e ARKLS_LMEM_NULL - the linear solver memory was NULL.
* ARKLS_PMEM_NULL - the preconditioner memory was NULL.

Note

The counter nfevalsBP is distinct from the counter nfevalsLS returned by the corresponding function
ARKodeGetNumLinRhsEvals () and also from the number of evaluations returned by the time-stepping mod-
ule (e.g., nfi_evals returned by ARKStepGetNumRhsEvals()). The total number of right-hand side function
evaluations is the sum of all three of these counters.

5.6.2 A parallel band-block-diagonal preconditioner module

A principal reason for using a parallel ODE solver (such as ARKODE) lies in the solution of partial differential equations
(PDEs). Moreover, Krylov iterative methods are used on many such problems due to the nature of the underlying linear
system of equations that needs to solved at each time step. For many PDEs, the linear algebraic system is large, sparse
and structured. However, if a Krylov iterative method is to be effective in this setting, then a nontrivial preconditioner
is required. Otherwise, the rate of convergence of the Krylov iterative method is usually slow, and degrades as the PDE
mesh is refined. Typically, an effective preconditioner must be problem-specific.

However, we have developed one type of preconditioner that treats a rather broad class of PDE-based problems. It has
been successfully used with CVODE for several realistic, large-scale problems [57], and is included in a software mod-
ule within the ARKODE package. This preconditioning module works with the parallel vector module NVECTOR_-
PARALLEL and is usable with any of the Krylov iterative linear solvers through the ARKLS interface. It generates
a preconditioner that is a block-diagonal matrix with each block being a band matrix. The blocks need not have the
same number of super- and sub-diagonals and these numbers may vary from block to block. This Band-Block-Diagonal
Preconditioner module is called ARKBBDPRE.

One way to envision these preconditioners is to think of the computational PDE domain as being subdivided into () non-
overlapping subdomains, where each subdomain is assigned to one of the () MPI tasks used to solve the ODE system.
The basic idea is to isolate the preconditioning so that it is local to each process, and also to use a (possibly cheaper)
approximate right-hand side function for construction of this preconditioning matrix. This requires the definition of a
new function g(¢,y) ~ f!(¢,y) that will be used to construct the BBD preconditioner matrix. At present, we assume
that the ODE be written in explicit form as

g=fE(ty) + f(ty),

184 Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

where f! corresponds to the ODE components to be treated implicitly, i.e. this preconditioning module does not
support problems with non-identity mass matrices. The user may set g = f, if no less expensive approximation is
desired.

Corresponding to the domain decomposition, there is a decomposition of the solution vector y into ) disjoint blocks
1q» and a decomposition of g into blocks g,. The block g, depends both on ¥, and on components of blocks y,
associated with neighboring subdomains (so-called ghost-cell data). If we let §, denote y, augmented with those other
components on which g, depends, then we have

g(t7 y) = [91(t, ?1)792(t7172)7 s ’gQ(tng>]T )

and each of the blocks g, (¢, 7,) is decoupled from one another.

The preconditioner associated with this decomposition has the form

P,
P,

where
Py=1—-7J,

0
and where J, is a difference quotient approximation to a—?q. This matrix is taken to be banded, with upper and lower

half-bandwidths mudq and mldg defined as the number o% non-zero diagonals above and below the main diagonal,
respectively. The difference quotient approximation is computed using mudq + mldg + 2 evaluations of g,,, but only
a matrix of bandwidth mukeep + mlkeep + 1 is retained. Neither pair of parameters need be the true half-bandwidths
of the Jacobian of the local block of g, if smaller values provide a more efficient preconditioner. The solution of the
complete linear system

Px=10
reduces to solving each of the distinct equations
Puixqg=0bq, q¢=1,...,0,

and this is done by banded LU factorization of P, followed by a banded backsolve.

Similar block-diagonal preconditioners could be considered with different treatments of the blocks F,. For example,
incomplete LU factorization or an iterative method could be used instead of banded LU factorization.

5.6.2.1 ARKBBDPRE user-supplied functions

The ARKBBDPRE module calls two user-provided functions to construct P: a required function gloc (of type ARK-
LocalFn()) which approximates the right-hand side function g(t,%) =~ f(t,y) and which is computed locally, and
an optional function cfn (of type ARKCommFn ()) which performs all inter-process communication necessary to eval-
uate the approximate right-hand side g. These are in addition to the user-supplied right-hand side function f’. Both
functions take as input the same pointer user_data that is passed by the user to ARKodeSetUserData() and that was
passed to the user’s function f. The user is responsible for providing space (presumably within user_data) for com-
ponents of y that are communicated between processes by cfn1, and that are then used by gloc, which should not do any
communication.

5.6. Preconditioner modules 185



User Documentation for ARKODE, v6.2.1

typedef int (*ARKLocalFn)(sunindextype Nlocal, sunrealtype t, N_Vector 'y, N_Vector glocal, void *user_data)
This gloc function computes g(t, y). It fills the vector glocal as a function of 7 and y.

Param Nlocal
the local vector length.

Param t
the value of the independent variable.

Param y
the value of the dependent variable vector on this process.

Param glocal
the output vector of ¢(t, y) on this process.

Param user_data
a pointer to user data, the same as the user_data parameter passed to ARKodeSetUserData().

Return
An ARKLocalFn should return 0 if successful, a positive value if a recoverable error occurred (in
which case ARKODE will attempt to correct), or a negative value if it failed unrecoverably (in
which case the integration is halted and ARKodeEvolve () will return ARK_LSETUP_FAIL).

Note

This function should assume that all inter-process communication of data needed to calculate glocal has
already been done, and that this data is accessible within user data.

The case where ¢ is mathematically identical to f/ is allowed.

typedef int (*ARKCommFn)(sunindextype Nlocal, sunrealtype t, N_Vector y, void *user_data)
This cfn function performs all inter-process communication necessary for the execution of the gloc function
above, using the input vector y.

Param Nlocal
the local vector length.

Param t
the value of the independent variable.

Param y
the value of the dependent variable vector on this process.

Param user_data
a pointer to user data, the same as the user_data parameter passed to ARKodeSetUserData().

Return
An ARKCommFn should return O if successful, a positive value if a recoverable error occurred
(in which case ARKODE will attempt to correct), or a negative value if it failed unrecoverably
(in which case the integration is halted and ARKodeEvolve () will return ARK_LSETUP_FAIL).

Note

The cfn function is expected to save communicated data in space defined within the data structure user_data.

Each call to the ¢fn function is preceded by a call to the right-hand side function f! with the same (¢, y)
arguments. Thus, ¢fin can omit any communication done by f7 if relevant to the evaluation of glocal. If all

186 Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

necessary communication was done in f, then ¢fin = NULL can be passed in the call to ARKBBDPrecInit ()
(see below).

5.6.2.2 ARKBBDPRE usage

In addition to the header files required for the integration of the ODE problem (see §5.1), to use the ARKBBDPRE
module, the user’s program must include the header file arkode_bbdpre.h which declares the needed function pro-
totypes.

The following is a summary of the proper usage of this module. Steps that are unchanged from the skeleton program
presented in §5.2 are italicized.

1.

N O e AW

11.
12.
13.
14.

15.
16.
17.

Initialize MPI

. Create the SUNDIALS simulation context object
. Set problem dimensions

. Set vector of initial values

. Create ARKODE object

. Specify integration tolerances

. Create iterative linear solver object

When creating the iterative linear solver object, specify the type of preconditioning (SUN_PREC_LEFT or SUN_-
PREC_RIGHT) to use.

. Set linear solver optional inputs
. Attach linear solver module

10.

Initialize the ARKBBDPRE preconditioner module

Specify the upper and lower half-bandwidths for computation mudq and mldg, the upper and lower half-
bandwidths for storage mukeep and mlkeep, and call

ier = ARKBBDPrecInit(arkode_mem, Nlocal, mudq, mldg, mukeep, mlkeep, dqrely, gloc,
cfn);

to allocate memory and initialize the internal preconditioner data. The last two arguments of ARKBBD-
PrecInit() are the two user-supplied functions of type ARKLocalFn() and ARKCommFn() described above,
respectively.

Create nonlinear solver object
Attach nonlinear solver module

Set nonlinear solver optional inputs
Set optional inputs

Note that the user should not call ARKodeSetPreconditioner() as it will overwrite the preconditioner setup
and solve functions.

Specify rootfinding problem
Advance solution in time
Get optional outputs

Additional optional outputs associated with ARKBBDPRE are available through the routines ARKBBDPrecGet-
WorkSpace () and ARKBBDPrecGetNumGfnEvals().

5.6. Preconditioner modules 187



User Documentation for ARKODE, v6.2.1

18. Deallocate memory for solution vector
19. Free solver memory

20. Free linear solver memory

21. Free nonlinear solver memory

22. Finalize MPI

5.6.2.3 ARKBBDPRE user-callable functions
The ARKBBDPRE preconditioner module is initialized (or re-initialized) and attached to the integrator by calling the
following functions:

int ARKBBDPrecInit (void *arkode_mem, sunindextype Nlocal, sunindextype mudq, sunindextype mldq,
sunindextype mukeep, sunindextype mlkeep, sunrealtype dqrely, ARKLocalFn gloc,
ARKCommFn cfn)

Initializes and allocates (internal) memory for the ARKBBDPRE preconditioner.
Parameters

» arkode_mem — pointer to the ARKODE memory block.
* Nlocal - local vector length.
» mudq — upper half-bandwidth to be used in the difference quotient Jacobian approximation.
* mldq - lower half-bandwidth to be used in the difference quotient Jacobian approximation.
» mukeep — upper half-bandwidth of the retained banded approximate Jacobian block.
» mlkeep — lower half-bandwidth of the retained banded approximate Jacobian block.

* dgrely — the relative increment in components of y used in the difference quotient approx-
imations. The default is dgrely = v/unit roundoff, which can be specified by passing dgrely
=0.0.

* gloc - the name of the C function (of type ARKLocalFn()) which computes the approxi-
mation g(t,y) = f'(t,y).

* cfn - the name of the C function (of type ARKCommFn ()) which performs all inter-process
communication required for the computation of g(¢, y).

Return values
* ARKLS_SUCCESS - the function exited successfully.
e ARKLS_MEM_NULL - arkode_mem was NULL.
e ARKLS_LMEM_NULL - the linear solver memory was NULL.
e ARKLS_ILL_INPUT - an input had an illegal value.
* ARKLS_MEM_FAIL — a memory allocation request failed.

Note

If one of the half-bandwidths mudq or mldq to be used in the difference quotient calculation of the approximate
Jacobian is negative or exceeds the value Nlocal-1, it is replaced by 0 or Nlocal-1 accordingly.

The half-bandwidths mudq and mldg need not be the true half-bandwidths of the Jacobian of the local block
of g when smaller values may provide a greater efficiency.

188 Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

Also, the half-bandwidths mukeep and mlkeep of the retained banded approximate Jacobian block may be
even smaller than mudg and mldg, to reduce storage and computational costs further.

For all four half-bandwidths, the values need not be the same on every processor.

The ARKBBDPRE module also provides a re-initialization function to allow solving a sequence of problems of the
same size, with the same linear solver choice, provided there is no change in Nlocal, mukeep, or mlkeep. After solving
one problem, and after calling *StepReInit to re-initialize ARKODE for a subsequent problem, a call to ARKBBD-
PrecReInit () canbe made to change any of the following: the half-bandwidths mudg and mldq used in the difference-
quotient Jacobian approximations, the relative increment dgrely, or one of the user-supplied functions gloc and cfn. If
there is a change in any of the linear solver inputs, an additional call to the “Set” routines provided by the SUNLINSOL
module, and/or one or more of the corresponding ARKodeSet*** functions, must also be made (in the proper order).

int ARKBBDPrecReInit (void *arkode_mem, sunindextype mudq, sunindextype mldq, sunrealtype dqrely)
Re-initializes the ARKBBDPRE preconditioner module.

Parameters
» arkode_mem — pointer to the ARKODE memory block.
» mudq — upper half-bandwidth to be used in the difference quotient Jacobian approximation.
* mldq — lower half-bandwidth to be used in the difference quotient Jacobian approximation.

* dgrely — the relative increment in components of y used in the difference quotient approx-
imations. The default is dgrely = +/unit roundoff, which can be specified by passing dgrely
=0.0.

Return values
* ARKLS_SUCCESS - the function exited successfully.
* ARKLS_MEM_NULL - arkode_mem was NULL.
e ARKLS_LMEM_NULL - the linear solver memory was NULL.
* ARKLS_PMEM_NULL - the preconditioner memory was NULL.

Note

If one of the half-bandwidths mudg or mldq is negative or exceeds the value Nlocal-1, it is replaced by O or
Nlocal-1 accordingly.

The following two optional output functions are available for use with the ARKBBDPRE module:

int ARKBBDPrecGetWorkSpace (void *arkode_mem, long int *lenrwBBDP, long int *leniwBBDP)
Returns the processor-local ARKBBDPRE real and integer workspace sizes.

Parameters
» arkode_mem — pointer to the ARKODE memory block.
* lenrwBBDP — the number of sunrealtype values in the ARKBBDPRE workspace.
* leniwBBDP — the number of integer values in the ARKBBDPRE workspace.
Return values
* ARKLS_SUCCESS - the function exited successfully.
e ARKLS_MEM_NULL - arkode_mem was NULL.

5.6. Preconditioner modules 189



User Documentation for ARKODE, v6.2.1

* ARKLS_LMEM_NULL — the linear solver memory was NULL.
* ARKLS_PMEM_NULL - the preconditioner memory was NULL.

Note

The workspace requirements reported by this routine correspond only to memory allocated within the
ARKBBDPRE module (the banded matrix approximation, banded SUNLinearSolver object, temporary
vectors). These values are local to each process.

The workspaces referred to here exist in addition to those given by the corresponding function
ARKodeGetLinlorkSpace().

int ARKBBDPrecGetNumGfnEvals (void *arkode_mem, long int *ngevalsBBDP)

Returns the number of calls made to the user-supplied gloc function (of type ARKLocalFn()) due to the finite
difference approximation of the Jacobian blocks used within the preconditioner setup function.

Parameters

» arkode_mem — pointer to the ARKODE memory block.

* ngevalsBBDP - the number of calls made to the user-supplied gloc function.
Return values

» ARKLS_SUCCESS - the function exited successfully.

* ARKLS_MEM_NULL - arkode_mem was NULL.

* ARKLS_LMEM_NULL - the linear solver memory was NULL.

e ARKLS_PMEM_NULL - the preconditioner memory was NULL.

In addition to the ngevalsBBDP gloc evaluations, the costs associated with ARKBBDPRE also include nlinsetups
LU factorizations, nlinsetups calls to cfn, npsolves banded backsolve calls, and nfevalsLS right-hand side function
evaluations, where nlinsetups is an optional ARKODE output and npsolves and nfevalsLS are linear solver optional
outputs (see the table §5.3.10.4).

5.7 Using the ARKStep time-stepping module

This section is concerned with the use of the ARKStep time-stepping module for the solution of initial value problems
(IVPs) in a C or C++ language setting. Usage of ARKStep follows that of the rest of ARKODE, and so in this section
we primarily focus on those usage aspects that are specific to ARKStep.

5.7.1 ARKStep User-callable functions

This section describes the ARKStep-specific functions that may be called by the user to setup and then solve an IVP
using the ARKStep time-stepping module. The large majority of these routines merely wrap underlying ARKODE
Jfunctions, and are now deprecated — each of these are clearly marked. However, some of these user-callable functions
are specific to ARKStep, as explained below.

As discussed in the main ARKODE user-callable function introduction, each of ARKODE’s time-stepping modules
clarifies the categories of user-callable functions that it supports. ARKStep supports all categories:

* temporal adaptivity

¢ implicit nonlinear and/or linear solvers
p

190 Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

* non-identity mass matrices

* relaxation Runge—Kutta methods

ARKStep also has forcing function support when converted to a SUNStepper or MRIStepInnerStepper. See
ARKodeCreateSUNStepper () and ARKStepCreateMRIStepInnerStepper () for additional details.

5.7.1.1 ARKStep initialization and deallocation functions

void *ARKStepCreate (ARKRhsFn fe, ARKRhsFn fi, sunrealtype t0, N_Vector y0, SUNContext sunctx)

This function creates an internal memory block for a problem to be solved using the ARKStep time-stepping
module in ARKODE.

Arguments:

¢ fe — the name of the C function (of type ARKRhsFn()) defining the explicit portion of the right-hand
side function in M (t) y'(t) = fE(t,y) + fL(t,y).

* fi — the name of the C function (of type ARKRhsFn()) defining the implicit portion of the right-hand
side function in M () y/(t) = fE(t,y) + fL(t,y).

* 10 — the initial value of ¢.
* y0 — the initial condition vector y(¢o).
* sunctx —the SUNContext object (see §4.2)

Return value: If successful, a pointer to initialized problem memory of type void*, to be passed to all user-

facing ARKStep routines listed below. If unsuccessful, a NULL pointer will be returned, and an error message
will be printed to stderr.

void ARKStepFree (void **arkode_mem)
This function frees the problem memory arkode_mem created by ARKStepCreate().
Arguments:
* arkode_mem — pointer to the ARKStep memory block.

Return value: None

Deprecated since version 6.1.0: Use ARKodeFree () instead.

5.7.1.2 ARKStep tolerance specification functions

int ARKStepSStolerances (void *arkode_mem, sunrealtype reltol, sunrealtype abstol)

This function specifies scalar relative and absolute tolerances.
Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* reltol — scalar relative tolerance.
* abstol — scalar absolute tolerance.

Return value:
e ARK_SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory was NULL

* ARK_NO_MALLOC if the ARKStep memory was not allocated by the time-stepping module

5.7. Using the ARKStep time-stepping module 191



User Documentation for ARKODE, v6.2.1

* ARK_ILL_INPUT if an argument had an illegal value (e.g. a negative tolerance).
Deprecated since version 6.1.0: Use ARKodeSStolerances () instead.

int ARKStepSVtolerances (void *arkode_mem, sunrealtype reltol, N_Vector abstol)

This function specifies a scalar relative tolerance and a vector absolute tolerance (a potentially different absolute
tolerance for each vector component).

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* reltol — scalar relative tolerance.
* abstol — vector containing the absolute tolerances for each solution component.
Return value:
e ARK_SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory was NULL
* ARK_NO_MALLOC if the ARKStep memory was not allocated by the time-stepping module
* ARK_ILL_INPUT if an argument had an illegal value (e.g. a negative tolerance).
Deprecated since version 6.1.0: Use ARKodeSVtolerances () instead.

int ARKStepWFtolerances (void *arkode_mem, ARKEwtFn efun)
This function specifies a user-supplied function efun to compute the error weight vector ewt.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.

* efun — the name of the function (of type ARKEwtFn()) that implements the error weight vector com-
putation.

Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory was NULL

* ARK_NO_MALLOC if the ARKStep memory was not allocated by the time-stepping module
Deprecated since version 6.1.0: Use ARKodeliFtolerances () instead.

int ARKStepResStolerance (void *arkode_mem, sunrealtype rabstol)

This function specifies a scalar absolute residual tolerance.
Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* rabstol — scalar absolute residual tolerance.
Return value:
e ARK_SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory was NULL
* ARK_NO_MALLOC if the ARKStep memory was not allocated by the time-stepping module
* ARK_ILL_INPUT if an argument had an illegal value (e.g. a negative tolerance).

Deprecated since version 6.1.0: Use ARKodeResStolerance () instead.

192 Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

int ARKStepResVtolerance (void *arkode_mem, N_Vector rabstol)

This function specifies a vector of absolute residual tolerances.
Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* rabstol — vector containing the absolute residual tolerances for each solution component.
Return value:
e ARK_SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory was NULL
* ARK_NO_MALLOC if the ARKStep memory was not allocated by the time-stepping module
e ARK_ILL_INPUT if an argument had an illegal value (e.g. a negative tolerance).
Deprecated since version 6.1.0: Use ARKodeResVtolerance () instead.

int ARKStepResFtolerance(void *arkode_mem, ARKRwtFn rfun)
This function specifies a user-supplied function rfun to compute the residual weight vector rwt.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.

* rfun — the name of the function (of type ARKRwtFn()) that implements the residual weight vector
computation.

Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory was NULL
* ARK_NO_MALLOC if the ARKStep memory was not allocated by the time-stepping module

Deprecated since version 6.1.0: Use ARKodeResFtolerance () instead.

5.7.1.3 Linear solver interface functions

int ARKStepSetLinearSolver (void *arkode_mem, SUNLinearSolver LS, SUNMatrix J)

This function specifies the SUNLinearSolver object that ARKStep should use, as well as a template Jacobian
SUNMatrix object (if applicable).

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

e LS — the SUNLinearSolver object to use.

* J — the template Jacobian SUNMatrix object to use (or NULL if not applicable).
Return value:

e ARKLS _SUCCESS if successful

* ARKLS_MEM_NULL if the ARKStep memory was NULL

* ARKLS_MEM_FAIL if there was a memory allocation failure

e ARKLS_ILL_INPUT if ARKLS is incompatible with the provided LS or J input objects, or the current
N_Vector module.

5.7. Using the ARKStep time-stepping module 193



User Documentation for ARKODE, v6.2.1

Notes:

If LS is a matrix-free linear solver, then the J argument should be NULL.

If LS is a matrix-based linear solver, then the template Jacobian matrix J will be used in the solve process,
so if additional storage is required within the SUNMatrix object (e.g. for factorization of a banded ma-
trix), ensure that the input object is allocated with sufficient size (see the documentation of the particular
SUNMATRIX type in the §9 for further information).

When using sparse linear solvers, it is typically much more efficient to supply J so that it includes the full
sparsity pattern of the Newton system matrices A = M —~.J, even if J itself has zeros in nonzero locations
of M. The reasoning for this is that A is constructed in-place, on top of the user-specified values of J, so if
the sparsity pattern in J is insufficient to store .4 then it will need to be resized internally by ARKStep.

Deprecated since version 6.1.0: Use ARKodeSetLinearSolver() instead.

5.7.1.4 Mass matrix solver specification functions

int ARKStepSetMassLinearSolver (void *arkode_mem, SUNLinearSolver LS, SUNMatrix M, sunbooleantype

time_dep)

This function specifies the SUNLinearSolver object that ARKStep should use for mass matrix systems, as well
as a template SUNMatrix object.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.
e LS — the SUNLinearSolver object to use.
* M — the template mass SUNMatrix object to use.

o time_dep — flag denoting whether the mass matrix depends on the independent variable (M = M (t))
or not (M # M (t)). SUNTRUE indicates time-dependence of the mass matrix.

Return value:

e ARKLS SUCCESS if successful
* ARKLS_MEM_NULL if the ARKStep memory was NULL
* ARKLS_MEM_FAIL if there was a memory allocation failure

* ARKLS_ILL _INPUT if ARKLS is incompatible with the provided LS or M input objects, or the current
N_Vector module.

Notes:

If LS is a matrix-free linear solver, then the M argument should be NULL.

If LS is a matrix-based linear solver, then the template mass matrix M will be used in the solve process, so
if additional storage is required within the SUNMatrix object (e.g. for factorization of a banded matrix),
ensure that the input object is allocated with sufficient size.

If called with time_dep set to SUNFALSE, then the mass matrix is only computed and factored once (or when
either ARKStepReInit () or ARKStepResize () are called), with the results reused throughout the entire
ARKStep simulation.

Unlike the system Jacobian, the system mass matrix is not approximated using finite-differences of any
functions provided to ARKStep. Hence, use of the a matrix-based LS requires the user to provide a mass-
matrix constructor routine (see ARKLsMassFn and ARKStepSetMassFn()).

Similarly, the system mass matrix-vector-product is not approximated using finite-differences of any func-
tions provided to ARKStep. Hence, use of a matrix-free LS requires the user to provide a mass-matrix-
times-vector product routine (see ARKLsMassTimesVecFn and ARKStepSetMassTimes()).

194

Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

Deprecated since version 6.1.0: Use ARKodeSetMassLinearSolver () instead.

5.7.1.5 Nonlinear solver interface functions

int ARKStepSetNonlinearSolver (void *arkode_mem, SUNNonlinearSolver NLS)
This function specifies the SUNNonlinearSolver object that ARKStep should use for implicit stage solves.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
e NLS —the SUNNonlinearSolver object to use.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory was NULL
* ARK_MEM_FAIL if there was a memory allocation failure
e ARK ILL_INPUT if ARKStep is incompatible with the provided NLS input object.

Notes:
ARKStep will use the Newton SUNNonlinearSolver module by default; a call to this routine replaces
that module with the supplied NLS object.

Deprecated since version 6.1.0: Use ARKodeSetNonlinearSolver () instead.

5.7.1.6 Rootfinding initialization function

int ARKStepRootInit (void *arkode_mem, int nrtfn, ARKRootFn g)

Initializes a rootfinding problem to be solved during the integration of the ODE system. It must be called after
ARKStepCreate (), and before ARKStepEvolve().

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* nrifn — number of functions g;, an integer > 0.

* g —name of user-supplied function, of type ARKRootFn (), defining the functions g; whose roots are
sought.

Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory was NULL
* ARK_MEM_FAIL if there was a memory allocation failure
e ARK_ILL_INPUT if nrtfn is greater than zero but g = NULL.

Notes:
To disable the rootfinding feature after it has already been initialized, or to free memory associated with
ARKStep’s rootfinding module, call ARKStepRootInit with nrtfn = 0.

Similarly, if a new IVP is to be solved with a call to ARKStepReInit (), where the new IVP has no rootfind-
ing problem but the prior one did, then call ARKStepRootInit with nrtfn = 0.

Deprecated since version 6.1.0: Use ARKodeRootInit () instead.

5.7. Using the ARKStep time-stepping module 195



User Documentation for ARKODE, v6.2.1

5.7.1.7 ARKStep solver function

int ARKStepEvolve (void *arkode_mem, sunrealtype tout, N_Vector yout, sunrealtype *tret, int itask)

Integrates the ODE over an interval in £.

Arguments:

arkode_mem — pointer to the ARKStep memory block.

tout — the next time at which a computed solution is desired.

yout — the computed solution vector.

tret — the time corresponding to yout (output).

itask — a flag indicating the job of the solver for the next user step.

The ARK_NORMAL option causes the solver to take internal steps until it has just overtaken a user-
specified output time, fout, in the direction of integration, i.e. ¢,,_1 < fout < t,, for forward integration,
or t, < tout < t,_; for backward integration. It will then compute an approximation to the solution
y(tout) by interpolation (as described in §2.2).

The ARK_ONE_STEP option tells the solver to only take a single internal step, y,,—1 — Y, and return
the solution at that point, y,,, in the vector yout.

Return value:

ARK _SUCCESS if successful.

ARK_ROOT _RETURN if ARKStepEvolve () succeeded, and found one or more roots. If the number
of root functions, nrifn, is greater than 1, call ARKStepGetRootInfo() to see which g; were found to
have a root at (*tret).

ARK_TSTOP_RETURN if ARKStepEvolve () succeeded and returned at tstop.
ARK_MEM_NULL if the arkode_mem argument was NULL.
ARK_NO_MALLOC if arkode_mem was not allocated.

ARK_ILL_INPUT if one of the inputs to ARKStepEvolve() is illegal, or some other input to the
solver was either illegal or missing. Details will be provided in the error message. Typical causes of
this failure:

(a) A component of the error weight vector became zero during internal time-stepping.

(b) The linear solver initialization function (called by the user after calling ARKStepCreate()) failed
to set the linear solver-specific Isolve field in arkode_mem.

(c) A root of one of the root functions was found both at a point ¢ and also very near ¢.
(d) The initial condition violates the inequality constraints.

ARK_TOO_MUCH_WORK if the solver took mxstep internal steps but could not reach tout. The
default value for mxstep is MXSTEP_DEFAULT = 500.

ARK_TOO_MUCH_ACC fif the solver could not satisfy the accuracy demanded by the user for some
internal step.

ARK_ERR_FAILURE if error test failures occurred either too many times (ark_maxnef’) during one
internal time step or occurred with |h| = Ay

ARK_CONV_FAILURE if either convergence test failures occurred too many times (ark_maxncf) dur-
ing one internal time step or occurred with |h| = hypin.

ARK_LINIT_FAIL if the linear solver’s initialization function failed.

196

Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

ARK_LSETUP_FAIL if the linear solver’s setup routine failed in an unrecoverable manner.

e ARK LSOLVE_FAIL if the linear solver’s solve routine failed in an unrecoverable manner.

ARK_MASSINIT_FAIL if the mass matrix solver’s initialization function failed.

ARK_MASSSETUP_FAIL if the mass matrix solver’s setup routine failed.
ARK_MASSSOLVE_FAIL if the mass matrix solver’s solve routine failed.

ARK_VECTOROP_ERR a vector operation error occurred.

Notes:

The input vector yout can use the same memory as the vector y0 of initial conditions that was passed to
ARKStepCreate().

In ARK_ONE_STEP mode, tout is used only on the first call, and only to get the direction and a rough scale
of the independent variable.

All failure return values are negative and so testing the return argument for negative values will trap all
ARKStepEvolve () failures.

Since interpolation may reduce the accuracy in the reported solution, if full method accuracy is desired the
user should issue a call to ARKStepSetStopTime () before the call to ARKStepEvolve () to specify a fixed
stop time to end the time step and return to the user. Upon return from ARKStepEvolve (), a copy of the
internal solution y,, will be returned in the vector yout. Once the integrator returns at a fsfop time, any future
testing for zstop is disabled (and can be re-enabled only though a new call to ARKStepSetStopTime()).

On any error return in which one or more internal steps were taken by ARKStepEvolve (), the returned
values of tret and yout correspond to the farthest point reached in the integration. On all other error returns,
tret and yout are left unchanged from those provided to the routine.

Deprecated since version 6.1.0: Use ARKodeEvolve () instead.

5.7.1.8 Optional input functions

Optional inputs for ARKStep

int ARKStepSetDefaults(void *arkode_mem)

Resets all optional input parameters to ARKStep’s original default values.
Arguments:

* arkode_mem — pointer to the ARKStep memory block.
Return value:

* ARK_SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL

e ARK_ILL_INPUT if an argument had an illegal value

Notes:
Does not change the user_data pointer or any parameters within the specified time-stepping module.

Also leaves alone any data structures or options related to root-finding (those can be reset using ARKStep-

RootInit()).

Deprecated since version 6.1.0: Use ARKodeSetDefaults() instead.

5.7.

Using the ARKStep time-stepping module

197



User Documentation for ARKODE, v6.2.1

int ARKStepSetInterpolantType (void *arkode_mem, int itype)

Deprecated since version 6.1.0: This function is now a wrapper to ARKodeSetInterpolantType(), see the
documentation for that function instead.

int ARKStepSetInterpolantDegree (void *arkode_mem, int degree)

Specifies the degree of the polynomial interpolant used for dense output (i.e. interpolation of solution output
values and implicit method predictors).

Arguments:
e arkode_mem — pointer to the ARKStep memory block.
* degree — requested polynomial degree.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory or interpolation module are NULL
e ARK_INTERP_FAIL if this is called after ARKStepEvolve()

* ARK_ILL_INPUT if an argument had an illegal value or the interpolation module has already been
initialized
Notes:
Allowed values are between 0 and 5.

This routine should be called after ARKStepCreate () and before ARKStepEvolve (). After the first call to
ARKStepEvolve () the interpolation degree may not be changed without first calling ARKStepReInit ().

If a user calls both this routine and ARKStepSetInterpolantType(), then ARKStepSetInterpolant-
Type () must be called first.

Since the accuracy of any polynomial interpolant is limited by the accuracy of the time-step solutions on
which it is based, the actual polynomial degree that is used by ARKStep will be the minimum of ¢ — 1 and
the input degree, for ¢ > 1 where ¢ is the order of accuracy for the time integration method.

Changed in version 5.5.1: When ¢ = 1, a linear interpolant is the default to ensure values obtained by the
integrator are returned at the ends of the time interval.

Deprecated since version 6.1.0: Use ARKodeSetInterpolantDegree () instead.

int ARKStepSetDenseOrder (void *arkode_mem, int dord)
Deprecated since version 5.2.0: Use ARKodeSetInterpolantDegree () instead.

int ARKStepSetDiagnostics (void *arkode_mem, FILE *diagfp)
Specifies the file pointer for a diagnostics file where all ARKStep step adaptivity and solver information is written.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* diagfp — pointer to the diagnostics output file.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory is NULL
e ARK_ILL_INPUT if an argument had an illegal value

198 Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

Notes:
This parameter can be stdout or stderr, although the suggested approach is to specify a pointer to a
unique file opened by the user and returned by fopen. If not called, or if called with a NULL file pointer,
all diagnostics output is disabled.

When run in parallel, only one process should set a non-NULL value for this pointer, since statistics from
all processes would be identical.

Deprecated since version 5.2.0: Use SUNLogger_SetInfoFilename () instead.

int ARKStepSetFixedStep (void *arkode_mem, sunrealtype hfixed)

Disables time step adaptivity within ARKStep, and specifies the fixed time step size to use for the following
internal step(s).

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* hfixed — value of the fixed step size to use.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory is NULL
* ARK_ILL_INPUT if an argument had an illegal value

Notes:
Pass 0.0 to return ARKStep to the default (adaptive-step) mode.

Use of this function is not generally recommended, since it gives no assurance of the validity of the com-
puted solutions. It is primarily provided for code-to-code verification testing purposes.

When using ARKStepSetFixedStep(), any values provided to the functions ARKStepSetInit-
Step(), ARKStepSetAdaptivityFn(), ARKStepSetMaxErrTestFails(), ARKStepSetAdaptiv-
ityMethod(), ARKStepSetCFLFraction(), ARKStepSetErrorBias(), ARKStepSetFixedStep-
Bounds (), ARKStepSetMaxCFailGrowth(), ARKStepSetMaxEFailGrowth(), ARKStepSetMax-
FirstGrowth(), ARKStepSetMaxGrowth(), ARKStepSetMinReduction(), ARKStepSetSafetyFac-
tor(), ARKStepSetSmallNumEFails(), ARKStepSetStabilityFn(), and ARKStepSetAdaptCon-
troller() will be ignored, since temporal adaptivity is disabled.

If both ARKStepSetFixedStep() and ARKStepSetStopTime () are used, then the fixed step size will be
used for all steps until the final step preceding the provided stop time (which may be shorter). To resume
use of the previous fixed step size, another call to ARKStepSetFixedStep () must be made prior to calling
ARKStepEvolve () to resume integration.

It is not recommended that ARKStepSetFixedStep () be used in concert with ARKStepSetMaxStep()
or ARKStepSetMinStep (), since at best those latter two routines will provide no useful information to the
solver, and at worst they may interfere with the desired fixed step size.

Deprecated since version 6.1.0: Use ARKodeSetFixedStep() instead.

int ARKStepSetInitStep (void *arkode_mem, sunrealtype hin)

Specifies the initial time step size ARKStep should use after initialization, re-initialization, or resetting.
Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* hin — value of the initial step to be attempted (£ 0).

Return value:

5.7. Using the ARKStep time-stepping module 199



User Documentation for ARKODE, v6.2.1

e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory is NULL
* ARK_ILL_INPUT if an argument had an illegal value

Notes:
Pass 0.0 to use the default value.
2
By default, ARKStep estimates the initial step size to be h = H— where §j is estimate of the second
Y

derivative of the solution at ¢.
This routine will also reset the step size and error history.
Deprecated since version 6.1.0: Use ARKodeSetInitStep() instead.

int ARKStepSetMaxHnilWarns (void *arkode_mem, int mxhnil)

Specifies the maximum number of messages issued by the solver to warn that ¢ + h = ¢ on the next internal step,
before ARKStep will instead return with an error.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* mxhnil — maximum allowed number of warning messages (> 0).
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL

* ARK_ILL_INPUT if an argument had an illegal value

Notes:
The default value is 10; set mxhnil to zero to specify this default.

A negative value indicates that no warning messages should be issued.
Deprecated since version 6.1.0: Use ARKodeSetMaxHnillWarns () instead.

int ARKStepSetMaxNumSteps (void *arkode_mem, long int mxsteps)

Specifies the maximum number of steps to be taken by the solver in its attempt to reach the next output time,
before ARKStep will return with an error.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* mxsteps — maximum allowed number of internal steps.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory is NULL
e ARK_ILL_INPUT if an argument had an illegal value

Notes:
Passing mxsteps = 0 results in ARKStep using the default value (500).

Passing mxsteps < 0 disables the test (not recommended).

Deprecated since version 6.1.0: Use ARKodeSetMaxNumSteps () instead.

200 Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

int ARKStepSetMaxStep (void *arkode_mem, sunrealtype hmax)

Specifies the upper bound on the magnitude of the time step size.
Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* hmax — maximum absolute value of the time step size (> 0).
Return value:

e ARK_SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL

e ARK_ILL_INPUT if an argument had an illegal value

Notes:
Pass himax < 0.0 to set the default value of co.

Deprecated since version 6.1.0: Use ARKodeSetMaxStep () instead.

int ARKStepSetMinStep (void *arkode_mem, sunrealtype hmin)
Specifies the lower bound on the magnitude of the time step size.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* hmin — minimum absolute value of the time step size (> 0).
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL

* ARK_ILL_INPUT if an argument had an illegal value

Notes:
Pass hmin < 0.0 to set the default value of 0.

Deprecated since version 6.1.0: Use ARKodeSetMinStep () instead.

int ARKStepSetStopTime (void *arkode_mem, sunrealtype tstop)
Specifies the value of the independent variable ¢ past which the solution is not to proceed.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* tstop — stopping time for the integrator.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory is NULL
* ARK_ILL_INPUT if an argument had an illegal value

Notes:
The default is that no stop time is imposed.

Once the integrator returns at a stop time, any future testing for tstop is disabled (and can be re-enabled
only though a new call to ARKStepSetStopTime()).

5.7. Using the ARKStep time-stepping module 201



User Documentation for ARKODE, v6.2.1

A stop time not reached before a call to ARKStepReInit () or ARKStepReset () will remain active but
can be disabled by calling ARKStepClearStopTime ().

Deprecated since version 6.1.0: Use ARKodeSetStopTime () instead.

int ARKStepSetInterpolateStopTime (void *arkode_mem, sunbooleantype interp)

Specifies that the output solution should be interpolated when the current ¢ equals the specified tstop (instead
of merely copying the internal solution y,,).

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* interp — flag indicating to use interpolation (1) or copy (0).
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory is NULL
Added in version 5.6.0.
Deprecated since version 6.1.0: Use ARKodeSetInterpolateStopTime () instead.

int ARKStepClearStopTime (void *arkode_mem)
Disables the stop time set with ARKStepSetStopTime ().

Arguments:

* arkode_mem — pointer to the ARKStep memory block.
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL

Notes:
The stop time can be re-enabled though a new call to ARKStepSetStopTime ().

Added in version 5.5.1.
Deprecated since version 6.1.0: Use ARKodeClearStopTime () instead.

int ARKStepSetUserData (void *arkode_mem, void *user_data)
Specifies the user data block user_data and attaches it to the main ARKStep memory block.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* user_data — pointer to the user data.
Return value:
e ARK _SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory is NULL
e ARK_ILL_INPUT if an argument had an illegal value

Notes:
If specified, the pointer to user_data is passed to all user-supplied functions for which it is an argument;
otherwise NULL is passed.

If user_data is needed in user preconditioner functions, the call to this function must be made before any
calls to ARKStepSetLinearSolver () and/or ARKStepSetMassLinearSolver().

202 Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

Deprecated since version 6.1.0: Use ARKodeSetUserData() instead.

int ARKStepSetMaxErrTestFails (void *arkode_mem, int maxnef)

Specifies the maximum number of error test failures permitted in attempting one step, before returning with an
error.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* maxnef — maximum allowed number of error test failures (> 0).
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL

e ARK_ILL_INPUT if an argument had an illegal value

Notes:
The default value is 7; set maxnef < 0 to specify this default.

Deprecated since version 6.1.0: Use ARKodeSetMaxErrTestFails () instead.

int ARKStepSetOptimalParams (void *arkode_mem)

Sets all adaptivity and solver parameters to our “best guess” values for a given integration method type (ERK,
DIRK, ARK) and a given method order.

Arguments:

e arkode_mem — pointer to the ARKStep memory block.
Return value:

e ARK_SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL

e ARK_ILL_INPUT if an argument had an illegal value

Notes:
Should only be called after the method order and integration method have been set. The “optimal” val-
ues resulted from repeated testing of ARKStep’s solvers on a variety of training problems. However, all
problems are different, so these values may not be optimal for all users.

Deprecated since version 6.1.0: Adjust solver parameters individually instead. For reference, this routine sets
the following non-default parameters:

» Explicit methods:

— SUNAdaptController PI() with SUNAdaptController_SetErrorBias() of 1.2 and
SUNAdaptController_SetParams_PI() of k; = 0.8 and ko = —0.31

ARKodeSetSafetyFactor() of 0.99

ARKodeSetMaxGrowth() of 25.0

ARKodeSetMaxEFailGrowth() of 0.3

* Implicit methods:
— Order 3:
% SUNAdaptController_I() with SUNAdaptController_SetErrorBias() of 1.9
% ARKodeSetSafetyFactor() of 0.957

5.7. Using the ARKStep time-stepping module 203



User Documentation for ARKODE, v6.2.1

% ARKodeSetMaxGrowth() of 17.6

% ARKodeSetMaxEFailGrowth() of 0.45

% ARKodeSetNonlinConvCoef() of 0.22

% ARKodeSetNonlinCRDown() of 0.17

* ARKodeSetNonlinRDiv() of 2.3

% ARKodeSetDeltaGammaMax () of 0.19
— Order 4:

% SUNAdaptController_PID() with SUNAdaptController_SetErrorBias() of 1.2 and
SUNAdaptController_SetParams_PID() of k1 = 0.535, ks = —0.209, and k3 = 0.148

% ARKodeSetSafetyFactor() of 0.988

% ARKodeSetMaxGrowth() of 31.5

% ARKodeSetMaxEFailGrowth() of 0.33

* ARKodeSetNonlinConvCoef() of 0.24

% ARKodeSetNonlinCRDown() of 0.26

% ARKodeSetNonlinRDiv() of 2.3

* ARKodeSetDeltaGammaMax () of 0.16

* ARKodeSetLSetupFrequency() of 31
— Order 5:

% SUNAdaptController_PID() with SUNAdaptController_SetErrorBias() of 3.3 and
SUNAdaptController_SetParams_PID() of k1 = 0.56, ko = —0.338, and k3 = 0.14

% ARKodeSetSafetyFactor() of 0.937
% ARKodeSetMaxGrowth() of 22.0
% ARKodeSetMaxEFailGrowth() of 0.44
* ARKodeSetNonlinConvCoef() of 0.25
% ARKodeSetNonlinCRDown() of 0.4
% ARKodeSetNonlinRDiv() of 2.3
* ARKodeSetDeltaGammaMax () of 0.32
* ARKodeSetLSetupFrequency() of 31
¢ ImEx methods:

— Order 2:
% ARKodeSetNonlinConvCoef () of 0.001
% ARKodeSetMaxNonlinIters() of 5

— Order 3:

% SUNAdaptController_PID() with SUNAdaptController_SetErrorBias() of 1.42 and
SUNAdaptController_SetParams_PID() of ki = 0.54, ko = —0.36, and k3 = 0.14

# ARKodeSetSafetyFactor() of 0.965
% ARKodeSetMaxGrowth() of 28.7

204 Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

ARKodeSetMaxEFailGrowth() of 0.46

*

* ARKodeSetNonlinConvCoef() of 0.22

% ARKodeSetNonlinCRDown() of 0.17

% ARKodeSetNonlinRDiv() of 2.3

# ARKodeSetDeltaGammaMax () of 0.19

* ARKodeSetLSetupFrequency() of 60
— Order 4:

% SUNAdaptController_PID() with SUNAdaptController_SetErrorBias() of 1.35 and
SUNAdaptController_SetParams_PID() of k1 = 0.543, k; = —0.297, and k3 = 0.14

* ARKodeSetSafetyFactor() of 0.97

% ARKodeSetMaxGrowth() of 25.0

% ARKodeSetMaxEFailGrowth() of 0.47

* ARKodeSetNonlinConvCoef() of 0.24

% ARKodeSetNonlinCRDown() of 0.26

% ARKodeSetNonlinRDiv() of 2.3

* ARKodeSetDeltaGammaMax () of 0.16

* ARKodeSetLSetupFrequency() of 31
— Order 5:

% SUNAdaptController_PI() with SUNAdaptController_SetErrorBias() of 1.15 and
SUNAdaptController_SetParams_PI() of k; = 0.8 and ky = —0.35

% ARKodeSetSafetyFactor() of 0.993
% ARKodeSetMaxGrowth() of 28.5

% ARKodeSetMaxEFailGrowth() of 0.3
* ARKodeSetNonlinConvCoef() of 0.25
% ARKodeSetNonlinCRDown() of 0.4

% ARKodeSetNonlinRDiv() of 2.3

* ARKodeSetDeltaGammaMax () of 0.32
* ARKodeSetLSetupFrequency() of 31

int ARKStepSetConstraints(void *arkode_mem, N_Vector constraints)
Specifies a vector defining inequality constraints for each component of the solution vector y.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.

* constraints — vector of constraint flags. Each component specifies the type of solution constraint:

0.0 = no constraint is imposed on y;,
1.0 = y; >0,
constraints[i] = ¢ —-1.0 = y; <0,
20 = y; >0,
—20 = y; <0.

5.7. Using the ARKStep time-stepping module 205



User Documentation for ARKODE, v6.2.1

Return value:
* ARK_SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory is NULL
* ARK_ILL_INPUT if the constraints vector contains illegal values

Notes:
The presence of a non-NULL constraints vector that is not 0.0 in all components will cause constraint check-
ing to be performed. However, a call with 0.0 in all components of constraints will result in an illegal
input return. A NULL constraints vector will disable constraint checking.

After a call to ARKStepResize() inequality constraint checking will be disabled and a call to ARK-
StepSetConstraints() is required to re-enable constraint checking.

Since constraint-handling is performed through cutting time steps that would violate the constraints, it is
possible that this feature will cause some problems to fail due to an inability to enforce constraints even at
the minimum time step size. Additionally, the features ARKStepSetConstraints() and ARKStepSet-
FixedStep () are incompatible, and should not be used simultaneously.

Deprecated since version 6.1.0: Use ARKodeSetConstraints () instead.

int ARKStepSetMaxNumConstrFails (void *arkode_mem, int maxfails)

Specifies the maximum number of constraint failures in a step before ARKStep will return with an error.
Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* maxfails — maximum allowed number of constrain failures.
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL

Notes:
Passing maxfails <= 0 results in ARKStep using the default value (10).

Deprecated since version 6.1.0: Use ARKodeSetMaxNumConstrFails() instead.

Optional inputs for IVP method selection

Optional input Function name Default
Set integrator method order ARKStepSetOrder () 4

Specify implicit/explicit problem ARKStepSetImEx () SUNTRUE
Specify explicit problem ARKStepSetExplicit () SUNFALSE
Specify implicit problem ARKStepSetImplicit() SUNFALSE
Set additive RK tables ARKStepSetTables() internal

Set additive RK tables via their numbers ARKStepSetTableNum() internal
Set additive RK tables via their names ARKStepSetTableName() internal

int ARKStepSetOrder (void *arkode_mem, int ord)
Specifies the order of accuracy for the ARK/DIRK/ERK integration method.

Arguments:

206 Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

* arkode_mem — pointer to the ARKStep memory block.
* ord —requested order of accuracy.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory is NULL
e ARK_ILL_INPUT if an argument had an illegal value

Notes:
For explicit methods, the allowed values are 2 < ord < 8. For implicit methods, the allowed values are
2 < ord < 5, and for ImEx methods the allowed values are 2 < ord < 5. Any illegal input will result in
the default value of 4.

Since ord affects the memory requirements for the internal ARKStep memory block, it cannot be changed
after the first call to ARKStepEvolve (), unless ARKStepReInit () is called.

Deprecated since version 6.1.0: Use ARKodeSetOrder () instead.

int ARKStepSetImEx (void *arkode_mem)

Specifies that both the implicit and explicit portions of problem are enabled, and to use an additive Runge—Kutta
method.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.
Return value:

* ARK_SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL

* ARK_ILL_INPUT if an argument had an illegal value

Notes:
This is automatically deduced when neither of the function pointers fe or fi passed to ARKStepCreate()
are NULL, but may be set directly by the user if desired.

int ARKStepSetExplicit(void *arkode_mem)

Specifies that the implicit portion of problem is disabled, and to use an explicit RK method.
Arguments:

* arkode_mem — pointer to the ARKStep memory block.
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL

e ARK_ILL_INPUT if an argument had an illegal value

Notes:
This is automatically deduced when the function pointer fi passed to ARKStepCreate () is NULL, but may
be set directly by the user if desired.

If the problem is posed in explicit form, i.e. § = f(¢, y), then we recommend that the ERKStep time-stepper
module be used instead.

5.7. Using the ARKStep time-stepping module 207



User Documentation for ARKODE, v6.2.1

int ARKStepSetImplicit(void *arkode_mem)

Specifies that the explicit portion of problem is disabled, and to use a diagonally implicit RK method.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

Return value:

e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory is NULL
* ARK_ILL_INPUT if an argument had an illegal value

Notes:

This is automatically deduced when the function pointer fe passed to ARKStepCreate () is NULL, but may
be set directly by the user if desired.

int ARKStepSetTables (void *arkode_mem, int q, int p, ARKodeButcherTable Bi, ARKodeButcherTable Be)

Specifies a customized Butcher table (or pair) for the ERK, DIRK, or ARK method.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* g — global order of accuracy for the ARK method.

* p — global order of accuracy for the embedded ARK method.
* Bi — the Butcher table for the implicit RK method.

¢ Be — the Butcher table for the explicit RK method.

Return value:

e ARK_SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory is NULL
e ARK_ILL_INPUT if an argument had an illegal value

Notes:

For a description of the ARKodeButcherTable type and related functions for creating Butcher tables, see
§6.

To set an explicit table, Bi must be NULL. This automatically calls ARKStepSetExplicit (). However, if
the problem is posed in explicit form, i.e. § = f(¢,y), then we recommend that the ERKStep time-stepper
module be used instead of ARKStep.

To set an implicit table, Be must be NULL. This automatically calls ARKStepSetImplicit().
If both Bi and Be are provided, this routine automatically calls ARKStepSetImEx ().

When only one table is provided (i.e., Bi or Be is NULL) then the input values of g and p are ignored and the
global order of the method and embedding (if applicable) are obtained from the Butcher table structures. If
both Bi and Be are non-NULL (e.g, an ImEx method is provided) then the input values of ¢ and p are used
as the order of the ARK method may be less than the orders of the individual tables. No error checking is
performed to ensure that either p or g correctly describe the coefficients that were input.

Error checking is subsequently performed at ARKStep initialization to ensure that Bi and Be (if non-NULL)
specify DIRK and ERK methods, respectively. Specifically, the A member of Bi must be lower triangular
with at least one nonzero value on the diagonal, and the A member of Be must be strictly lower triangular.
When both Bi and Be are non-NULL, they must agree on the number of internal stages, i.e., the stages
members of both structures must match.

208

Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

If the inputs Bi or Be do not contain an embedding (when the corresponding explicit or implicit table is
non-NULL), the user must call ARKStepSetFixedStep() to enable fixed-step mode and set the desired
time step size.

Warning:
This should not be used with ARKodeSetOrder ().

int ARKStepSetTableNum(void *arkode_mem, ARKODE_DIRKTublelD itable, ARKODE_ERKTubleID etable)
Indicates to use specific built-in Butcher tables for the ERK, DIRK or ARK method.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
¢ itable — index of the DIRK Butcher table.
* etable — index of the ERK Butcher table.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory is NULL
* ARK_ILL_INPUT if an argument had an illegal value

Notes:
The allowable values for both the itable and etable arguments corresponding to built-in tables may be found
in §18.

To choose an explicit table, set itable to a negative value. This automatically calls ARKStepSetEx-
plicit(). However, if the problem is posed in explicit form, i.e. y = f(¢,y), then we recommend
that the ERKStep time-stepper module be used instead of ARKStep.

To select an implicit table, set etable to a negative value. This automatically calls ARKStepSetIm-
plicit().

If both itable and etable are non-negative, then these should match an existing implicit/explicit pair, listed
in §18.3. This automatically calls ARKStepSetImEx ().

In all cases, error-checking is performed to ensure that the tables exist.

Warning:
This should not be used with ARKodeSetOrder().

int ARKStepSetTableName (void *arkode_mem, const char *itable, const char *etable)
Indicates to use specific built-in Butcher tables for the ERK, DIRK or ARK method.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* itable — name of the DIRK Butcher table.
* etable — name of the ERK Butcher table.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory is NULL
e ARK_ILL_INPUT if an argument had an illegal value

5.7. Using the ARKStep time-stepping module 209



User Documentation for ARKODE, v6.2.1

Notes:
The allowable values for both the itable and etable arguments corresponding to built-in tables may be found
in §18. This function is case sensitive.

To choose an explicit table, set itable to "ARKODE_DIRK_NONE". This automatically calls ARKStepSet-
Explicit(). However, if the problem is posed in explicit form, i.e. ¥ = f(¢,y), then we recommend that
the ERKStep time-stepper module be used instead of ARKStep.

To select an implicit table, set etable to "ARKODE_ERK_NONE". This automatically calls ARKStepSetIm-
plicit().

If both itable and etable are not none, then these should match an existing implicit/explicit pair, listed in
§18.3. This automatically calls ARKStepSetImEx().

In all cases, error-checking is performed to ensure that the tables exist.

Warning:
This should not be used with ARKodeSetOrder ().

Optional inputs for time step adaptivity

int ARKStepSetAdaptController (void *arkode_mem, SUNAdaptController C)

Sets a user-supplied time-step controller object.
Arguments:
* arkode_mem — pointer to the ARKStep memory block.

* C — user-supplied time adaptivity controller. If NULL then the PID controller will be created (see
§12.2).

Return value:

e ARK_SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL

e ARK_ MEM_FAIL if C was NULL and the PID controller could not be allocated.
Added in version 5.7.0.
Deprecated since version 6.1.0: Use ARKodeSetAdaptController() instead.

int ARKStepSetAdaptivityFn(void *arkode_mem, ARKAdaptFn hfun, void *h_data)

Sets a user-supplied time-step adaptivity function.
Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* hfun — name of user-supplied adaptivity function.

* h_data — pointer to user data passed to hfun every time it is called.
Return value:

* ARK_SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL

e ARK_ILL_INPUT if an argument had an illegal value

Notes:
This function should focus on accuracy-based time step estimation; for stability based time steps the func-
tion ARKStepSetStabilityFn() should be used instead.

210 Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

Deprecated since version 5.7.0: Use the SUNAdaptController infrastructure instead (see §12.1).

int ARKStepSetAdaptivityMethod(void *arkode_mem, int imethod, int idefault, int pq, sunrealtype
*adapt_params)

Specifies the method (and associated parameters) used for time step adaptivity.
Arguments:
* arkode_mem — pointer to the ARKStep memory block.

* imethod — accuracy-based adaptivity method choice (0 < imethod < 5): 0is PID, 1is PI, 2is I, 3 is
explicit Gustafsson, 4 is implicit Gustafsson, and 5 is the ImEx Gustafsson.

* idefault — flag denoting whether to use default adaptivity parameters (1), or that they will be supplied
in the adapt_params argument (0).

* pq —flag denoting whether to use the embedding order of accuracy p (0), the method order of accuracy
g (1), or the minimum of the two (any input not equal to O or 1) within the adaptivity algorithm. p is
the default.

* adapt_params[0] — k1 parameter within accuracy-based adaptivity algorithms.

* adapt_params[1] — ko parameter within accuracy-based adaptivity algorithms.

* adapt_params[2] — k3 parameter within accuracy-based adaptivity algorithms.
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL

* ARK_ILL_INPUT if an argument had an illegal value

Notes:
If custom parameters are supplied, they will be checked for validity against published stability intervals. If
other parameter values are desired, it is recommended to instead provide a custom function through a call
to ARKStepSetAdaptivityFn().

Changed in version 5.7.0: Prior to version 5.7.0, any nonzero value for pg would result in use of the em-
bedding order of accuracy.

Deprecated since version 5.7.0: Use the SUNAdaptController infrastructure instead (see §12.1).

int ARKStepSetAdaptivityAdjustment (void *arkode_mem, int adjust)

Called by a user to adjust the method order supplied to the temporal adaptivity controller. For example, if the
user expects order reduction due to problem stiffness, they may request that the controller assume a reduced order
of accuracy for the method by specifying a value adjust < 0.

Arguments:
¢ arkode_mem — pointer to the ARKStep memory block.
* adjust — adjustment factor (default is -1).
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory is NULL
* ARK_ILL_INPUT if an argument had an illegal value

Notes:
This should be called prior to calling ARKStepEvolve (), and can only be reset following a call to ARK-
StepReInit().

5.7. Using the ARKStep time-stepping module 211



User Documentation for ARKODE, v6.2.1

Added in version 5.7.0.
Deprecated since version 6.1.0: Use ARKodeSetAdaptivityAdjustment () instead.

int ARKStepSetCFLFraction(void *arkode_mem, sunrealtype cfl_frac)

Specifies the fraction of the estimated explicitly stable step to use.
Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* ¢fl_frac — maximum allowed fraction of explicitly stable step (default is 0.5).
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL

e ARK_ILL_INPUT if an argument had an illegal value

Notes:
Any non-positive parameter will imply a reset to the default value.

Deprecated since version 6.1.0: Use ARKodeSetCFLFraction() instead.

int ARKStepSetErrorBias (void *arkode_mem, sunrealtype bias)
Specifies the bias to be applied to the error estimates within accuracy-based adaptivity strategies.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* bias — bias applied to error in accuracy-based time step estimation (default is 1.5).
Return value:

* ARK_SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL

* ARK_ILL_INPUT if an argument had an illegal value

Notes:
Any value below 1.0 will imply a reset to the default value.

If both this and one of ARKStepSetAdaptivityMethod() or ARKStepSetAdaptController () will be
called, then this routine must be called second.

Deprecated since version 5.7.0: Use the SUNAdaptController infrastructure instead (see §12.1).

int ARKStepSetFixedStepBounds (void *arkode_mem, sunrealtype 1b, sunrealtype ub)
Specifies the step growth interval in which the step size will remain unchanged.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* [b —lower bound on window to leave step size fixed (default is 1.0).

* ub — upper bound on window to leave step size fixed (default is 1.5).
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL

* ARK_ILL_INPUT if an argument had an illegal value

212 Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

Notes:
Any interval not containing 1.0 will imply a reset to the default values.

Deprecated since version 6.1.0: Use ARKodeSetFixedStepBounds () instead.

int ARKStepSetMaxCFailGrowth(void *arkode_mem, sunrealtype etact)

Specifies the maximum step size growth factor upon an algebraic solver convergence failure on a stage solve
within a step, 7. from §2.15.3.1.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* etacf — time step reduction factor on a nonlinear solver convergence failure (default is 0.25).
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL

e ARK_ILL_INPUT if an argument had an illegal value

Notes:
Any value outside the interval (0, 1] will imply a reset to the default value.

Deprecated since version 6.1.0: Use ARKodeSetMaxCFailGrowth() instead.

int ARKStepSetMaxEFailGrowth(void *arkode_mem, sunrealtype etamxf)

Specifies the maximum step size growth factor upon multiple successive accuracy-based error failures in the
solver.

Arguments:

e arkode_mem — pointer to the ARKStep memory block.

* etamxf — time step reduction factor on multiple error fails (default is 0.3).
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL

* ARK_ILL_INPUT if an argument had an illegal value

Notes:
Any value outside the interval (0, 1] will imply a reset to the default value.

Deprecated since version 6.1.0: Use ARKodeSetMaxEFailGrowth() instead.

int ARKStepSetMaxFirstGrowth(void *arkode_mem, sunrealtype etamx1)
Specifies the maximum allowed growth factor in step size following the very first integration step.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* etamx] — maximum allowed growth factor after the first time step (default is 10000.0).
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL

e ARK_ILL_INPUT if an argument had an illegal value

5.7. Using the ARKStep time-stepping module 213



User Documentation for ARKODE, v6.2.1

Notes:
Any value < 1.0 will imply a reset to the default value.

Deprecated since version 6.1.0: Use ARKodeSetMaxFirstGrowth() instead.

int ARKStepSetMaxGrowth (void *arkode_mem, sunrealtype mx_growth)

Specifies the maximum allowed growth factor in step size between consecutive steps in the integration process.
Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* mx_growth — maximum allowed growth factor between consecutive time steps (default is 20.0).
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL

* ARK_ILL_INPUT if an argument had an illegal value

Notes:
Any value < 1.0 will imply a reset to the default value.

Deprecated since version 6.1.0: Use ARKodeSetMaxGrowth() instead.

int ARKStepSetMinReduction(void *arkode_mem, sunrealtype eta_min)

Specifies the minimum allowed reduction factor in step size between step attempts, resulting from a temporal
error failure in the integration process.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* eta_min — minimum allowed reduction factor in time step after an error test failure (default is 0.1).
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL

e ARK_ILL_INPUT if an argument had an illegal value

Notes:
Any value outside the interval (0, 1) will imply a reset to the default value.

Deprecated since version 6.1.0: Use ARKodeSetMinReduction() instead.

int ARKStepSetSafetyFactor (void *arkode_mem, sunrealtype safety)
Specifies the safety factor to be applied to the accuracy-based estimated step.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* safety — safety factor applied to accuracy-based time step (default is 0.96).
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL

* ARK_ILL_INPUT if an argument had an illegal value

214 Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

Notes:
Any value < 0 will imply a reset to the default value.

Deprecated since version 6.1.0: Use ARKodeSetSafetyFactor () instead.
int ARKStepSetSmallNumEFails (void *arkode_mem, int small_nef)

Specifies the threshold for “multiple” successive error failures before the efamxf parameter from ARKStepSet -
MaxEFailGrowth() is applied.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* small_nef — bound to determine ‘multiple’ for etamxf (default is 2).
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL

e ARK_ILL_INPUT if an argument had an illegal value

Notes:
Any value < 0 will imply a reset to the default value.

Deprecated since version 6.1.0: Use ARKodeSetSmallNumEFails () instead.
int ARKStepSetStabilityFn(void *arkode_mem, ARKExpStabFn EStab, void *estab_data)

Sets the problem-dependent function to estimate a stable time step size for the explicit portion of the ODE system.
Arguments:

* arkode_mem — pointer to the ARKStep memory block.

e EStab — name of user-supplied stability function.

* estab_data — pointer to user data passed to EStab every time it is called.
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL

e ARK_ILL_INPUT if an argument had an illegal value

Notes:
This function should return an estimate of the absolute value of the maximum stable time step for the
explicit portion of the ODE system. It is not required, since accuracy-based adaptivity may be sufficient
for retaining stability, but this can be quite useful for problems where the explicit right-hand side function
fE(t,y) contains stiff terms.

Deprecated since version 6.1.0: Use ARKodeSetStabilityFn() instead.

5.7. Using the ARKStep time-stepping module 215



User Documentation for ARKODE, v6.2.1

Optional inputs for implicit stage solves

int ARKStepSetLinear (void *arkode_mem, int timedepend)

Specifies that the implicit portion of the problem is linear.
Arguments:

* arkode_mem — pointer to the ARKStep memory block.

s timedepend — flag denoting whether the Jacobian of f!(t,v) is time-dependent (1) or not (0).
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL

* ARK_ILL_INPUT if an argument had an illegal value

Notes:
Tightens the linear solver tolerances and takes only a single Newton iteration. Calls ARKStepSetDelt-
aGammalMax () to enforce Jacobian recomputation when the step size ratio changes by more than 100 times
the unit roundoff (since nonlinear convergence is not tested). Only applicable when used in combination
with the modified or inexact Newton iteration (not the fixed-point solver).

When f(t,y) is time-dependent, all linear solver structures (Jacobian, preconditioner) will be updated
preceding each implicit stage. Thus one must balance the relative costs of such recomputation against the
benefits of requiring only a single Newton linear solve.

Deprecated since version 6.1.0: Use ARKodeSetLinear () instead.

int ARKStepSetNonlinear (void *arkode_mem)
Specifies that the implicit portion of the problem is nonlinear.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL

* ARK_ILL_INPUT if an argument had an illegal value

Notes:
This is the default behavior of ARKStep, so the function is primarily useful to undo a previous call to
ARKStepSetLinear(). Calls ARKStepSetDeltaGammaMax () to reset the step size ratio threshold to the
default value.

Deprecated since version 6.1.0: Use ARKodeSetNonlinear () instead.

int ARKStepSetPredictorMethod (void *arkode_mem, int method)
Specifies the method from §2.15.5 to use for predicting implicit solutions.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
¢ method — method choice (0 < method < 4):
— 0is the trivial predictor,

— 1 is the maximum order (dense output) predictor,

216 Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

2 is the variable order predictor, that decreases the polynomial degree for more distant RK stages,

3 is the cutoff order predictor, that uses the maximum order for early RK stages, and a first-order
predictor for distant RK stages,

4 is the bootstrap predictor, that uses a second-order predictor based on only information within
the current step. deprecated

5 is the minimum correction predictor, that uses all preceding stage information within the current
step for prediction. deprecated

Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory is NULL
e ARK_ILL_INPUT if an argument had an illegal value

Notes:
The default value is 0. If method is set to an undefined value, this default predictor will be used.

Options 4 and 5 are currently not supported when solving a problem involving a non-identity mass matrix.
In that case, selection of method as 4 or 5 will instead default to the trivial predictor (method 0). Both of
these options have been deprecated, and will be removed from a future release.

Deprecated since version 6.1.0: Use ARKodeSetPredictorMethod() instead.

int ARKStepSetStagePredictFn(void *arkode_mem, ARKStagePredictFn PredictStage)

Sets the user-supplied function to update the implicit stage predictor prior to execution of the nonlinear or linear
solver algorithms that compute the implicit stage solution.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.

* PredictStage — name of user-supplied predictor function. If NULL, then any previously-provided stage
prediction function will be disabled.

Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory is NULL

Notes:
See §5.4.6 for more information on this user-supplied routine.

Deprecated since version 6.1.0: Use ARKodeSetStagePredictFn() instead.
int ARKStepSetN1lsRhsFn(void *arkode_mem, ARKRAsFn nls_f1)

Specifies an alternative implicit right-hand side function for evaluating f'(¢,) within nonlinear system function
evaluations (2.39) - (2.41).

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* nls_fi — the alternative C function for computing the right-hand side function f7(#,y) in the ODE.
Return value:

e ARK_SUCCESS if successful.

* ARK_MEM_NULL if the ARKStep memory was NULL.

5.7. Using the ARKStep time-stepping module 217



User Documentation for ARKODE, v6.2.1

Notes:
The default is to use the implicit right-hand side function provided to ARKStepCreate() in nonlinear
system functions. If the input implicit right-hand side function is NULL, the default is used.

When using a non-default nonlinear solver, this function must be called after ARKStepSetNonlinear-
Solver().

Deprecated since version 6.1.0: Use ARKodeSetNIsRhsFn () instead.

int ARKStepSetMaxNonlinIters (void *arkode_mem, int maxcor)

Specifies the maximum number of nonlinear solver iterations permitted per implicit stage solve within each time
step.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* maxcor — maximum allowed solver iterations per stage (> 0).
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory is NULL
* ARK_ILL_INPUT if an argument had an illegal value or if the SUNNONLINSOL module is NULL
* ARK_NLS_OP_ERR if the SUNNONLINSOL object returned a failure flag

Notes:
The default value is 3; set maxcor < 0 to specify this default.

Deprecated since version 6.1.0: Use ARKodeSetMaxNonlinIters() instead.

int ARKStepSetNonlinConvCoef (void *arkode_mem, sunrealtype nlscoef)

Specifies the safety factor € used within the nonlinear solver convergence test (2.54).
Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* nilscoef — coefficient in nonlinear solver convergence test (> 0.0).
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL

e ARK_ILL_INPUT if an argument had an illegal value

Notes:
The default value is 0.1; set nlscoef < 0 to specify this default.

Deprecated since version 6.1.0: Use ARKodeSetNonlinConvCoef () instead.

int ARKStepSetNonlinCRDown (void *arkode_mem, sunrealtype crdown)

Specifies the constant ¢, used in estimating the nonlinear solver convergence rate (2.53).
Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* crdown — nonlinear convergence rate estimation constant (default is 0.3).
Return value:

e ARK SUCCESS if successful

218 Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

* ARK_MEM_NULL if the ARKStep memory is NULL
e ARK_ILL_INPUT if an argument had an illegal value

Notes:
Any non-positive parameter will imply a reset to the default value.

Deprecated since version 6.1.0: Use ARKodeSetNonlinCRDown () instead.

int ARKStepSetNonlinRDiv (void *arkode_mem, sunrealtype rdiv)

Specifies the nonlinear correction threshold r4;, from (2.55), beyond which the iteration will be declared diver-
gent.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* rdiv — tolerance on nonlinear correction size ratio to declare divergence (default is 2.3).
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL

* ARK_ILL_INPUT if an argument had an illegal value

Notes:
Any non-positive parameter will imply a reset to the default value.

Deprecated since version 6.1.0: Use ARKodeSetNonlinRDiv () instead.

int ARKStepSetMaxConvFails (void *arkode_mem, int maxncf)

Specifies the maximum number of nonlinear solver convergence failures permitted during one step, maz .y
from §2.15.3.1, before ARKStep will return with an error.

Arguments:

e arkode_mem — pointer to the ARKStep memory block.

* maxncf — maximum allowed nonlinear solver convergence failures per step (> 0).
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL

* ARK_ILL_INPUT if an argument had an illegal value

Notes:
The default value is 10; set maxncf < 0 to specify this default.

Upon each convergence failure, ARKStep will first call the Jacobian setup routine and try again (if a Newton
method is used). If a convergence failure still occurs, the time step size is reduced by the factor etacf (set
within ARKStepSetMaxCFailGrowth()).

Deprecated since version 6.1.0: Use ARKodeSetMaxConvFails () instead.

int ARKStepSetDeduceImplicitRhs (void *arkode_mem, sunbooleantype deduce)

Specifies if implicit stage derivatives are deduced without evaluating f/. See §2.15.1 for more details.
Arguments:

* arkode_mem — pointer to the ARKStep memory block.

5.7. Using the ARKStep time-stepping module 219



User Documentation for ARKODE, v6.2.1

* deduce —If SUNFALSE (default), the stage derivative is obtained by evaluating f! with the stage solution
returned from the nonlinear solver. If SUNTRUE, the stage derivative is deduced without an additional
evaluation of f7.

Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL
Added in version 5.2.0.

Deprecated since version 6.1.0: Use ARKodeSetDeduceImplicitRhs () instead.

Linear solver interface optional input functions
Optional inputs for the ARKLS linear solver interface

int ARKStepSetDeltaGammaMax (void *arkode_mem, sunrealtype dgmax)

Specifies a scaled step size ratio tolerance, Av,,q, from §2.15.2.3, beyond which the linear solver setup routine
will be signaled.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* dgmax — tolerance on step size ratio change before calling linear solver setup routine (default is 0.2).
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL

* ARK_ILL_INPUT if an argument had an illegal value

Notes:
Any non-positive parameter will imply a reset to the default value.

Deprecated since version 6.1.0: Use ARKodeSetDel taGammaMax () instead.

int ARKStepSetLSetupFrequency (void *arkode_mem, int msbp)
Specifies the frequency of calls to the linear solver setup routine, msbp from §2.15.2.3.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
» msbp — the linear solver setup frequency.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory is NULL

Notes:
Positive values of msbp specify the linear solver setup frequency. For example, an input of 1 means the
setup function will be called every time step while an input of 2 means it will be called called every other
time step. If msbp is 0, the default value of 20 will be used. A negative value forces a linear solver step at
each implicit stage.

Deprecated since version 6.1.0: Use ARKodeSetLSetupFrequency () instead.

220 Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

int ARKStepSetJacEvalFrequency (void *arkode_mem, long int msbj)

Specifies the number of steps after which the Jacobian information is considered out-of-date, msbj from
§2.15.2.3.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* msbj — the Jacobian re-computation or preconditioner update frequency.
Return value:

* ARKLS_SUCCESS if successful.

* ARKLS_MEM_NULL if the ARKStep memory was NULL.

* ARKLS_LMEM_NULL if the linear solver memory was NULL.

Notes:
If nstlj is the step number at which the Jacobian information was lasted updated and nst is the current
step number, nst - nstlj >= msbj indicates that the Jacobian information will be updated during the
next linear solver setup call.

As the Jacobian update frequency is only checked within calls to the linear solver setup routine, Jacobian
information may be more than msbj steps old when updated depending on when a linear solver setup call
occurs. See §2.15.2.3 for more information on when linear solver setups are performed.

Passing a value msbj < 0 indicates to use the default value of 51.

This function must be called after the ARKLS system solver interface has been initialized through a call to
ARKStepSetLinearSolver().

Deprecated since version 6.1.0: Use ARKodeSetJacEvalFrequency () instead.

Optional inputs for matrix-based SUNLinearSolver modules

int ARKStepSetJacFn(void *arkode_mem, ARKLsJacFn jac)
Specifies the Jacobian approximation routine to be used for the matrix-based solver with the ARKLS interface.

Arguments:

e arkode_mem — pointer to the ARKStep memory block.

* jac —name of user-supplied Jacobian approximation function.
Return value:

e ARKLS_SUCCESS if successful

* ARKLS_MEM_NULL if the ARKStep memory was NULL

* ARKLS_LMEM_NULL if the linear solver memory was NULL

Notes:
This routine must be called after the ARKLS linear solver interface has been initialized through a call to
ARKStepSetLinearSolver().

By default, ARKLS uses an internal difference quotient function for the SUNMATRIX_DENSE and SUN-
MATRIX_BAND modules. If NULL is passed in for jac, this default is used. An error will occur if no jac is
supplied when using other matrix types.

The function type ARKLsJacFn () is described in §5.4.

Deprecated since version 6.1.0: Use ARKodeSetJacFn() instead.

5.7. Using the ARKStep time-stepping module 221



User Documentation for ARKODE, v6.2.1

int ARKStepSetLinSysFn(void *arkode_mem, ARKLsLinSysFn linsys)

Specifies the linear system approximation routine to be used for the matrix-based solver with the ARKLS inter-
face.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* linsys — name of user-supplied linear system approximation function.
Return value:

* ARKLS_SUCCESS if successful

* ARKLS_MEM_NULL if the ARKStep memory was NULL

* ARKLS_LMEM_NULL if the linear solver memory was NULL

Notes:
This routine must be called after the ARKLS linear solver interface has been initialized through a call to
ARKStepSetLinearSolver().

By default, ARKLS uses an internal linear system function that leverages the SUNMATRIX API to form
the system M — ~J. If NULL is passed in for linsys, this default is used.

The function type ARKLsLinSysFn() is described in §5.4.
Deprecated since version 6.1.0: Use ARKodeSetLinSysFn() instead.
int ARKStepSetMassFn(void *arkode_mem, ARKLsMassFn mass)

Specifies the mass matrix approximation routine to be used for the matrix-based solver with the ARKLS interface.
Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* mass — name of user-supplied mass matrix approximation function.
Return value:

e ARKLS _SUCCESS if successful

* ARKLS_MEM_NULL if the ARKStep memory was NULL

* ARKLS_MASSMEM_NULL if the mass matrix solver memory was NULL

e ARKLS_ILL_INPUT if an argument had an illegal value

Notes:
This routine must be called after the ARKLS mass matrix solver interface has been initialized through a
call to ARKStepSetMassLinearSolver().

Since there is no default difference quotient function for mass matrices, mass must be non-NULL.
The function type ARKLsMassFn() is described in §5.4.
Deprecated since version 6.1.0: Use ARKodeSetMassFn() instead.

int ARKStepSetLinearSolutionScaling(void *arkode_mem, sunbooleantype onoff)

Enables or disables scaling the linear system solution to account for a change in +y in the linear system. For more
details see §10.2.1.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* onoff — flag to enable (SUNTRUE) or disable (SUNFALSE) scaling

222 Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

Return value:
* ARKLS_SUCCESS if successful
* ARKLS_MEM_NULL if the ARKStep memory was NULL
e ARKLS ILL_INPUT if the attached linear solver is not matrix-based

Notes:
Linear solution scaling is enabled by default when a matrix-based linear solver is attached.

Deprecated since version 6.1.0: Use ARKodeSetLinearSolutionScaling() instead.

Optional inputs for matrix-free SUNLinearSolver modules

int ARKStepSetJacTimes (void *arkode_mem, ARKLsJacTimesSetupFn jtsetap, ARKLsJacTimesVecFn jtimes)
Specifies the Jacobian-times-vector setup and product functions.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* jtsetup — user-defined Jacobian-vector setup function. Pass NULL if no setup is necessary.
* jtimes — user-defined Jacobian-vector product function.
Return value:
e ARKLS _SUCCESS if successful.
* ARKLS_MEM_NULL if the ARKStep memory was NULL.
* ARKLS_LMEM_NULL if the linear solver memory was NULL.

ARKLS_ILL_INPUT if an input has an illegal value.

ARKLS_SUNLS_FAIL if an error occurred when setting up the Jacobian-vector product in the SUN-
LinearSolver object used by the ARKLS interface.

Notes:
The default is to use an internal finite difference quotient for jtimes and to leave out jtsetup. If NULL is
passed to jtimes, these defaults are used. A user may specify non-NULL jtimes and NULL jtsetup inputs.

This function must be called after the ARKLS system solver interface has been initialized through a call to
ARKStepSetLinearSolver().

The function types ARKLsJacTimesSetupFn and ARKLsJacTimesVecFn are described in §5.4.
Deprecated since version 6.1.0: Use ARKodeSetJacTimes () instead.

int ARKStepSetJacTimesRhsFn(void *arkode_mem, ARKRhsFn jtimesRhsFn)

Specifies an alternative implicit right-hand side function for use in the internal Jacobian-vector product difference
quotient approximation.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.

e jtimesRhsFn — the name of the C function (of type ARKRhsFn()) defining the alternative right-hand
side function.

Return value:

e ARKLS_SUCCESS if successful.

5.7. Using the ARKStep time-stepping module 223



User Documentation for ARKODE, v6.2.1

* ARKLS_MEM_NULL if the ARKStep memory was NULL.
* ARKLS_LMEM_NULL if the linear solver memory was NULL.
* ARKLS_ILL_INPUT if an input has an illegal value.

Notes:
The default is to use the implicit right-hand side function provided to ARKStepCreate() in the internal
difference quotient. If the input implicit right-hand side function is NULL, the default is used.

This function must be called after the ARKLS system solver interface has been initialized through a call to
ARKStepSetLinearSolver().

Deprecated since version 6.1.0: Use ARKodeSetJacTimesRhsFn() instead.

int ARKStepSetMassTimes (void *arkode_mem, ARKLsMassTimesSetupFn mtsetup, ARKLsMassTimesVecFn
mtimes, void *mtimes_data)

Specifies the mass matrix-times-vector setup and product functions.
Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* mtsetup — user-defined mass matrix-vector setup function. Pass NULL if no setup is necessary.

* mtimes — user-defined mass matrix-vector product function.

* mtimes_data — a pointer to user data, that will be supplied to both the mtsetup and mtimes functions.
Return value:

e ARKLS_SUCCESS if successful.

e ARKLS_MEM_NULL if the ARKStep memory was NULL.

* ARKLS_MASSMEM_NULL if the mass matrix solver memory was NULL.

ARKLS_ILL_INPUT if an input has an illegal value.

ARKLS_SUNLS_FAIL if an error occurred when setting up the mass-matrix-vector product in the
SUNLinearSolver object used by the ARKLS interface.

Notes:
There is no default finite difference quotient for mtimes, so if using the ARKLS mass matrix solver interface
with NULL-valued SUNMATRIX input M, and this routine is called with NULL-valued mtimes, an error
will occur. A user may specify NULL for mtsetup.

This function must be called after the ARKLS mass matrix solver interface has been initialized through a
call to ARKStepSetMassLinearSolver().

The function types ARKLsMassTimesSetupFn and ARKLsMassTimesVecFn are described in §5.4.

Deprecated since version 6.1.0: Use ARKodeSetMassTimes () instead.

224 Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

Optional inputs for iterative SUNLinearSolver modules

int ARKStepSetPreconditioner (void *arkode_mem, ARKLsPrecSetupFn psetap, ARKLsPrecSolveFn psolve)

Specifies the user-supplied preconditioner setup and solve functions.
Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* psetup — user defined preconditioner setup function. Pass NULL if no setup is needed.
* psolve — user-defined preconditioner solve function.
Return value:
e ARKLS_SUCCESS if successful.
* ARKLS_MEM_NULL if the ARKStep memory was NULL.
* ARKLS_LMEM_NULL if the linear solver memory was NULL.
ARKLS_ILL_INPUT if an input has an illegal value.

ARKLS_SUNLS_FAIL if an error occurred when setting up preconditioning in the SUNLinearSolver
object used by the ARKLS interface.

Notes:
The default is NULL for both arguments (i.e., no preconditioning).

This function must be called after the ARKLS system solver interface has been initialized through a call to
ARKStepSetLinearSolver().

Both of the function types ARKLsPrecSetupFn() and ARKLsPrecSolveFn() are described in §5.4.
Deprecated since version 6.1.0: Use ARKodeSetPreconditioner () instead.

int ARKStepSetMassPreconditioner (void *arkode_mem, ARKLsMassPrecSetupFn psetup,
ARKLsMassPrecSolveFn psolve)

Specifies the mass matrix preconditioner setup and solve functions.
Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* psetup — user defined preconditioner setup function. Pass NULL if no setup is to be done.
* psolve — user-defined preconditioner solve function.
Return value:
e ARKLS_SUCCESS if successful.
ARKLS_MEM_NULL if the ARKStep memory was NULL.
ARKLS _LMEM_NULL if the linear solver memory was NULL.

ARKLS_ILL_INPUT if an input has an illegal value.

* ARKLS_SUNLS_FAIL if an error occurred when setting up preconditioning in the SUNLinearSolver
object used by the ARKLS interface.

Notes:
This function must be called after the ARKLS mass matrix solver interface has been initialized through a
call to ARKStepSetMassLinearSolver().

The default is NULL for both arguments (i.e. no preconditioning).

5.7. Using the ARKStep time-stepping module 225



User Documentation for ARKODE, v6.2.1

Both of the function types ARKLsMassPrecSetupFn() and ARKLsMassPrecSolveFn() are described in
§5.4.

Deprecated since version 6.1.0: Use ARKodeSetMassPreconditioner () instead.

int ARKStepSetEpsLin(void *arkode_mem, sunrealtype eplifac)

Specifies the factor €7, by which the tolerance on the nonlinear iteration is multiplied to get a tolerance on the
linear iteration.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* eplifac — linear convergence safety factor.
Return value:
e ARKLS_SUCCESS if successful.
* ARKLS_MEM_NULL if the ARKStep memory was NULL.
* ARKLS_LMEM_NULL if the linear solver memory was NULL.
* ARKLS_ILL_INPUT if an input has an illegal value.

Notes:
Passing a value eplifac < 0 indicates to use the default value of 0.05.

This function must be called after the ARKLS system solver interface has been initialized through a call to
ARKStepSetLinearSolver().

Deprecated since version 6.1.0: Use ARKodeSetEpsLin() instead.

int ARKStepSetMassEpsLin(void *arkode_mem, sunrealtype eplifac)

Specifies the factor by which the tolerance on the nonlinear iteration is multiplied to get a tolerance on the mass
matrix linear iteration.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* eplifac — linear convergence safety factor.
Return value:
e ARKLS_SUCCESS if successful.
* ARKLS_MEM_NULL if the ARKStep memory was NULL.
* ARKLS_MASSMEM_NULL if the mass matrix solver memory was NULL.
* ARKLS_ILL_INPUT if an input has an illegal value.

Notes:
This function must be called after the ARKLS mass matrix solver interface has been initialized through a
call to ARKStepSetMassLinearSolver().

Passing a value eplifac < 0 indicates to use the default value of 0.05.
Deprecated since version 6.1.0: Use ARKodeSetMassEpsLin() instead.

int ARKStepSetLSNormFactor (void *arkode_mem, sunrealtype nrmfac)

Specifies the factor to use when converting from the integrator tolerance (WRMS norm) to the linear solver
tolerance (L2 norm) for Newton linear system solves.

Arguments:

226 Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

* arkode_mem — pointer to the ARKStep memory block.
* nrmfac — the norm conversion factor. If nrmfac is:

> ( then the provided value is used.

= 0 then the conversion factor is computed using the vector length i.e., nrmfac = sqrt(N_-
VGetLength(y)) (defaulr).

< 0 then the conversion factor is computed using the vector dot product i.e., ntmfac = sqrt(N_-
VDotProd(v,v)) where all the entries of v are one.

Return value:
e ARK SUCCESS if successful.

* ARK_MEM_NULL if the ARKStep memory was NULL.
Notes:

This function must be called after the ARKLS system solver interface has been initialized through a call to
ARKStepSetLinearSolver().

Deprecated since version 6.1.0: Use ARKodeSetLSNormFactor () instead.

int ARKStepSetMassLSNormFactor (void *arkode_mem, sunrealtype nrmfac)

Specifies the factor to use when converting from the integrator tolerance (WRMS norm) to the linear solver
tolerance (L2 norm) for mass matrix linear system solves.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* nrmfac — the norm conversion factor. If nrmfac is:

> ( then the provided value is used.

= 0 then the conversion factor is computed using the vector length i.e., nrmfac = sqrt(N_-
VGetLength(y)) (default).

< 0 then the conversion factor is computed using the vector dot product i.e., ntmfac = sqrt(N_-
VDotProd(v,v)) where all the entries of v are one.

Return value:
e ARK_SUCCESS if successful.

* ARK_MEM_NULL if the ARKStep memory was NULL.
Notes:

This function must be called after the ARKLS mass matrix solver interface has been initialized through a
call to ARKStepSetMassLinearSolver().

Deprecated since version 6.1.0: Use ARKodeSetMassLSNormFactor () instead.

5.7. Using the ARKStep time-stepping module 227



User Documentation for ARKODE, v6.2.1

Rootfinding optional input functions

int ARKStepSetRootDirection(void *arkode _mem, int *rootdir)

Specifies the direction of zero-crossings to be located and returned.
Arguments:
* arkode_mem — pointer to the ARKStep memory block.

* rootdir — state array of length nrifn, the number of root functions g; (the value of nrtfn was supplied
in the call to ARKStepRootInit()). If rootdir[i] == O then crossing in either direction for g;
should be reported. A value of +1 or -1 indicates that the solver should report only zero-crossings
where g; is increasing or decreasing, respectively.

Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory is NULL
e ARK_ILL_INPUT if an argument had an illegal value

Notes:
The default behavior is to monitor for both zero-crossing directions.

Deprecated since version 6.1.0: Use ARKodeSetRootDirection() instead.

int ARKStepSetNoInactiveRootWarn (void *arkode_mem)

Disables issuing a warning if some root function appears to be identically zero at the beginning of the integration.
Arguments:

* arkode_mem — pointer to the ARKStep memory block.
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL

Notes:
ARKStep will not report the initial conditions as a possible zero-crossing (assuming that one or more
components g; are zero at the initial time). However, if it appears that some g; is identically zero at the
initial time (i.e., g; is zero at the initial time and after the first step), ARKStep will issue a warning which
can be disabled with this optional input function.

Deprecated since version 6.1.0: Use ARKodeSetNoInactiveRootWarn() instead.

5.7.1.9 Interpolated output function

int ARKStepGetDky (void *arkode_mem, sunrealtype t, int k, N_Vector dky)

Computes the k-th derivative of the function y at the time ¢, i.e. y(k) (t), for values of the independent variable
satisfying ¢, — h,, < t < t,, with ¢,, as current internal time reached, and h,, is the last internal step size
successfully used by the solver. This routine uses an interpolating polynomial of degree min(degree, 5), where
degree is the argument provided to ARKStepSetInterpolantDegree (). The user may request k in the range
{0,..., min(degree, kmax)} where kmax depends on the choice of interpolation module. For Hermite interpolants
kmax = 5 and for Lagrange interpolants kmax = 3.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

228 Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

* t —the value of the independent variable at which the derivative is to be evaluated.
* k — the derivative order requested.
* dky — output vector (must be allocated by the user).
Return value:
e ARK_SUCCESS if successful
* ARK_BAD_K if k is not in the range {O0,..., min(degree, kmax)}.
* ARK_BAD_T if t is not in the interval [t,, — hy,, t,]
* ARK_BAD_DKY if the dky vector was NULL
* ARK_MEM_NULL if the ARKStep memory is NULL

Notes:
It is only legal to call this function after a successful return from ARKStepEvolve().

A user may access the values t,, and h,, via the functions ARKStepGetCurrentTime () and ARKStepGet-

LastStep(), respectively.

Deprecated since version 6.1.0: Use ARKodeGetDky () instead.

5.7.1.10 Optional output functions

Main solver optional output functions

int ARKStepGetWorkSpace (void *arkode_mem, long int *lenrw, long int *leniw)

Returns the ARKStep real and integer workspace sizes.
Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* [enrw — the number of sunrealtype values in the ARKStep workspace.
¢ leniw — the number of integer values in the ARKStep workspace.
Return value:
* ARK_SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory was NULL
Deprecated since version 6.1.0: Use ARKodeGetlWorkSpace () instead.

int ARKStepGetNumSteps (void *arkode_mem, long int *nsteps)

Returns the cumulative number of internal steps taken by the solver (so far).
Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* nsteps — number of steps taken in the solver.
Return value:

* ARK_SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory was NULL

Deprecated since version 6.1.0: Use ARKodeGetNumSteps () instead.

5.7. Using the ARKStep time-stepping module

229



User Documentation for ARKODE, v6.2.1

int ARKStepGetActualInitStep (void *arkode_mem, sunrealtype *hinused)

Returns the value of the integration step size used on the first step.
Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* hinused — actual value of initial step size.
Return value:
e ARK_SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory was NULL
Notes:

Even if the value of the initial integration step was specified by the user through a call to ARKStepSetInit-
Step (), this value may have been changed by ARKStep to ensure that the step size fell within the prescribed
bounds (Apmin < ho < Amaz), OF to satisfy the local error test condition, or to ensure convergence of the

nonlinear solver.

Deprecated since version 6.1.0: Use ARKodeGetActualInitStep() instead.

int ARKStepGetLastStep(void *arkode_mem, sunrealtype *hlast)

Returns the integration step size taken on the last successful internal step.
Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* hlast — step size taken on the last internal step.
Return value:

e ARK_SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory was NULL
Deprecated since version 6.1.0: Use ARKodeGetLastStep () instead.

int ARKStepGetCurrentStep (void *arkode_mem, sunrealtype *hcur)

Returns the integration step size to be attempted on the next internal step.
Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* hcur — step size to be attempted on the next internal step.
Return value:

e ARK_SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory was NULL
Deprecated since version 6.1.0: Use ARKodeGetCurrentStep () instead.

int ARKStepGetCurrentTime (void *arkode_mem, sunrealtype *tcur)

Returns the current internal time reached by the solver.
Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* tcur — current internal time reached.

Return value:

230

Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory was NULL
Deprecated since version 6.1.0: Use ARKodeGetCurrentTime () instead.

int ARKStepGetCurrentState (void *arkode_mem, N_Vector *ycur)

Returns the current internal solution reached by the solver.
Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* ycur — current internal solution.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory was NULL

Notes:
Users should exercise extreme caution when using this function, as altering values of ycur may lead to
undesirable behavior, depending on the particular use case and on when this routine is called.

Deprecated since version 6.1.0: Use ARKodeGetCurrentState() instead.

int ARKStepGetCurrentGamma (void *arkode_mem, sunrealtype *gamma)
Returns the current internal value of « used in the implicit solver Newton matrix (see equation (2.47)).

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* gamma — current step size scaling factor in the Newton system.
Return value:

e ARK SUCCESS if successful

e ARK_MEM_NULL if the ARKStep memory was NULL
Deprecated since version 6.1.0: Use ARKodeGetCurrentGamma () instead.

int ARKStepGetTolScaleFactor (void *arkode_mem, sunrealtype *tolsfac)

Returns a suggested factor by which the user’s tolerances should be scaled when too much accuracy has been
requested for some internal step.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* tolsfac — suggested scaling factor for user-supplied tolerances.
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory was NULL
Deprecated since version 6.1.0: Use ARKodeGetTolScaleFactor () instead.

int ARKStepGetErrWeights(void *arkode_mem, N_Vector eweight)
Returns the current error weight vector.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

5.7. Using the ARKStep time-stepping module 231



User Documentation for ARKODE, v6.2.1

* eweight — solution error weights at the current time.
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory was NULL

Notes:
The user must allocate space for eweight, that will be filled in by this function.

Deprecated since version 6.1.0: Use ARKodeGetErriieights() instead.

int ARKStepGetResWeights (void *arkode_mem, N_Vector rweight)

Returns the current residual weight vector.
Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* rweight — residual error weights at the current time.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory was NULL

Notes:
The user must allocate space for rweight, that will be filled in by this function.

Deprecated since version 6.1.0: Use ARKodeGetResleights () instead.

int ARKStepGetStepStats(void *arkode_mem, long int *nsteps, sunrealtype *hinused, sunrealtype *hlast,
sunrealtype *hcur, sunrealtype *tcur)

Returns many of the most useful optional outputs in a single call.
Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* nsteps — number of steps taken in the solver.

* hinused — actual value of initial step size.

* hlast — step size taken on the last internal step.

* hcur — step size to be attempted on the next internal step.

* fcur — current internal time reached.
Return value:

e ARK SUCCESS if successful

e ARK_MEM_NULL if the ARKStep memory was NULL
Deprecated since version 6.1.0: Use ARKodeGetStepStats () instead.

int ARKStepPrintAllStats(void *arkode_mem, FILE *outfile, SUNOutputFormat fmt)
Outputs all of the integrator, nonlinear solver, linear solver, and other statistics.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* outfile — pointer to output file.

e fimt — the output format:

232 Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

— SUN_OUTPUTFORMAT_TABLE — prints a table of values

— SUN_OUTPUTFORMAT_CSV — prints a comma-separated list of key and value pairs e.g., keyl,
valuel,key2,value2,...

Return value:
* ARK_SUCCESS - if the output was successfully.
* ARK_MEM_NULL - if the ARKStep memory was NULL.
* ARK_ILL INPUT - if an invalid formatting option was provided.

Note

The Python module tools/suntools provides utilities to read and output the data from a SUNDIALS CSV
output file using the key and value pair format.

Added in version 5.2.0.
Deprecated since version 6.1.0: Use ARKodePrintAlIlStats() instead.

char *ARKStepGetReturnFlagName (long int flag)
Returns the name of the ARKStep constant corresponding to flag. See ARKODE Constants.

Arguments:

¢ flag — a return flag from an ARKStep function.
Return value: The return value is a string containing the name of the corresponding constant.
Deprecated since version 6.1.0: Use ARKodeGetReturnFlagName () instead.

int ARKStepGetNumExpSteps (void *arkode_mem, long int *expsteps)
Returns the cumulative number of stability-limited steps taken by the solver (so far).

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* expsteps — number of stability-limited steps taken in the solver.
Return value:

* ARK_SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory was NULL
Deprecated since version 6.1.0: Use ARKodeGetNumExpSteps () instead.

int ARKStepGetNumAccSteps (void *arkode_mem, long int *accsteps)

Returns the cumulative number of accuracy-limited steps taken by the solver (so far).
Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* accsteps — number of accuracy-limited steps taken in the solver.
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory was NULL

Deprecated since version 6.1.0: Use ARKodeGetNumAccSteps () instead.

5.7. Using the ARKStep time-stepping module 233



User Documentation for ARKODE, v6.2.1

int ARKStepGetNumStepAttempts (void *arkode_mem, long int *step_attempts)

Returns the cumulative number of steps attempted by the solver (so far).
Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* step_attempts — number of steps attempted by solver.
Return value:

e ARK_SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory was NULL

Deprecated since version 6.1.0: Use ARKodeGetNumStepAttempts () instead.

int ARKStepGetNumRhsEvals (void *arkode_mem, long int *nfe_evals, long int *nfi_evals)

Returns the number of calls to the user’s right-hand side functions, f¥ and f! (so far).

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* nfe_evals — number of calls to the user’s f(t,y) function.

* nfi_evals — number of calls to the user’s f7(t,y) function.
Return value:

e ARK_SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory was NULL
Notes:

The nfi_evals value does not account for calls made to f! by a linear solver or preconditioner module.

Deprecated since version 6.2.0: Use ARKodeGetNumRhsEvals () instead.

int ARKStepGetNumErrTestFails (void *arkode_mem, long int *netfails)

Returns the number of local error test failures that have occurred (so far).
Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* netfails — number of error test failures.
Return value:

* ARK_SUCCESS if successful

e ARK_MEM_NULL if the ARKStep memory was NULL

Deprecated since version 6.1.0: Use ARKodeGetNumErrTestFails () instead.

int ARKStepGetNumStepSolveFails (void *arkode_mem, long int *ncnf)

Returns the number of failed steps due to a nonlinear solver failure (so far).
Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* ncnf — number of step failures.
Return value:

e ARK SUCCESS if successful

234

Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

* ARK_MEM_NULL if the ARKStep memory was NULL
Deprecated since version 6.1.0: Use ARKodeGetNumStepSolveFails () instead.

int ARKStepGetCurrentButcherTables (void *arkode_mem, ARKodeButcherTable *Bi, ARKodeButcherTable
*Be)

Returns the explicit and implicit Butcher tables currently in use by the solver.
Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* Bi — pointer to the implicit Butcher table structure.

* Be — pointer to the explicit Butcher table structure.
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory was NULL

Note: The ARKodeButcherTable data structure is defined as a pointer to the following C structure:

typedef struct ARKStepButcherTableMem {

int q; /* method order of accuracy */
int p; /* embedding order of accuracy %/
int stages; /* number of stages */

sunrealtype **A; /* Butcher table coefficients
sunrealtype *c; /* canopy node coefficients

sunrealtype *b; /* root node coefficients
sunrealtype *d; /% embedding coefficients

} *ARKStepButcherTable;

For more details see §6.

int ARKStepGetEstLocalErrors (void *arkode_mem, N_Vector ele)

Returns the vector of estimated local truncation errors for the current step.
Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* ele — vector of estimated local truncation errors.
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory was NULL

Notes:
The user must allocate space for ele, that will be filled in by this function.

The values returned in ele are valid only after a successful call to ARKStepEvolve() (i.e., it returned a
non-negative value).

The ele vector, together with the eweight vector from ARKStepGetErrifeights (), can be used to deter-
mine how the various components of the system contributed to the estimated local error test. Specifically,
that error test uses the WRMS norm of a vector whose components are the products of the components of
these two vectors. Thus, for example, if there were recent error test failures, the components causing the
failures are those with largest values for the products, denoted loosely as eweight[i]*ele[i].

5.7. Using the ARKStep time-stepping module 235



User Documentation for ARKODE, v6.2.1

Deprecated since version 6.1.0: Use ARKodeGetEstLocalErrors() instead.

int ARKStepGetTimestepperStats(void *arkode_mem, long int *expsteps, long int *accsteps, long int
*step_attempts, long int *nfe_evals, long int *nfi_evals, long int *nlinsetups,

long int *netfails)

Returns many of the most useful time-stepper statistics in a single call.
Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* expsteps — number of stability-limited steps taken in the solver.
* accsteps — number of accuracy-limited steps taken in the solver.
* step_attempts — number of steps attempted by the solver.
* nfe_evals — number of calls to the user’s f(¢,y) function.
* nfi_evals — number of calls to the user’s f(¢,y) function.
* nlinsetups — number of linear solver setup calls made.
* netfails — number of error test failures.
Return value:
* ARK_SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory was NULL

int ARKStepGetNumConstrFails (void *arkode_mem, long int *nconstrfails)

Returns the cumulative number of constraint test failures (so far).
Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* nconstrfails — number of constraint test failures.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory was NULL
Deprecated since version 6.1.0: Use ARKodeGetNumConstrFails () instead.

int ARKStepGetUserData(void *arkode_mem, void **user_data)
Returns the user data pointer previously set with ARKStepSetUserData().

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* user_data — memory reference to a user data pointer
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory was NULL
Added in version 5.3.0.

Deprecated since version 6.1.0: Use ARKodeGetUserData () instead.

236

Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

Implicit solver optional output functions

int ARKStepGetNumLinSolvSetups (void *arkode_mem, long int *nlinsetups)

Returns the number of calls made to the linear solver’s setup routine (so far).
Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* nlinsetups — number of linear solver setup calls made.
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory was NULL

Note: This is only accumulated for the “life” of the nonlinear solver object; the counter is reset whenever a new
nonlinear solver module is “attached” to ARKStep, or when ARKStep is resized.

Deprecated since version 6.1.0: Use ARKodeGetNumLinSolvSetups () instead.

int ARKStepGetNumNonlinSolvIters (void *arkode_mem, long int *nniters)

Returns the number of nonlinear solver iterations performed (so far).
Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* nniters — number of nonlinear iterations performed.
Return value:
* ARK_SUCCESS if successful
e ARK_MEM_NULL if the ARKStep memory was NULL
* ARK_NLS_OP_ERR if the SUNNONLINSOL object returned a failure flag

Note: This is only accumulated for the “life” of the nonlinear solver object; the counter is reset whenever a new
nonlinear solver module is “attached” to ARKStep, or when ARKStep is resized.

Deprecated since version 6.1.0: Use ARKodeGetNumNonlinSolvIters() instead.

int ARKStepGetNumNonlinSolvConvFails (void *arkode_mem, long int *nncfails)

Returns the number of nonlinear solver convergence failures that have occurred (so far).
Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* nncfails — number of nonlinear convergence failures.
Return value:

e ARK_SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory was NULL

Note: This is only accumulated for the “life” of the nonlinear solver object; the counter is reset whenever a new
nonlinear solver module is “attached” to ARKStep, or when ARKStep is resized.

Deprecated since version 6.1.0: Use ARKodeGetNumNonlinSolvConvFails () instead.

5.7. Using the ARKStep time-stepping module 237



User Documentation for ARKODE, v6.2.1

int ARKStepGetNonlinSolvStats(void *arkode_mem, long int *nniters, long int *nncfails)

Returns all of the nonlinear solver statistics in a single call.
Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* nniters — number of nonlinear iterations performed.
* nncfails — number of nonlinear convergence failures.
Return value:
* ARK_SUCCESS if successful
e ARK_MEM_NULL if the ARKStep memory was NULL
* ARK_NLS_OP_ERR if the SUNNONLINSOL object returned a failure flag

Note: This is only accumulated for the “life” of the nonlinear solver object; the counters are reset whenever a
new nonlinear solver module is “attached” to ARKStep, or when ARKStep is resized.

Deprecated since version 6.1.0: Use ARKodeGetNonlinSolvStats () instead.

Rootfinding optional output functions

int ARKStepGetRootInfo (void *arkode_mem, int *rootsfound)

Returns an array showing which functions were found to have a root.
Arguments:
* arkode_mem — pointer to the ARKStep memory block.

* rootsfound — array of length nrtfn with the indices of the user functions g; found to have a root (the value
of nrtfn was supplied in the call to ARKStepRootInit()). Fori = 0... nrtfn-1, rootsfound[i] is
nonzero if g; has a root, and 0 if not.

Return value:
e ARK_SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory was NULL

Notes:
The user must allocate space for rootsfound prior to calling this function.

For the components of g; for which a root was found, the sign of rootsfound[i] indicates the direction
of zero-crossing. A value of +1 indicates that g; is increasing, while a value of -1 indicates a decreasing g;.

Deprecated since version 6.1.0: Use ARKodeGetRootInfo() instead.

int ARKStepGetNumGEvals (void *arkode_mem, long int *ngevals)

Returns the cumulative number of calls made to the user’s root function g.
Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* ngevals — number of calls made to g so far.
Return value:

e ARK_SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory was NULL

238 Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

Deprecated since version 6.1.0: Use ARKodeGetNumGEvals () instead.

Linear solver interface optional output functions

int ARKStepGetJac (void *arkode_mem, SUNMatrix *J)

Returns the internally stored copy of the Jacobian matrix of the ODE implicit right-hand side function.
Parameters
» arkode_mem — the ARKStep memory structure
* J — the Jacobian matrix
Return values
* ARKLS_SUCCESS - the output value has been successfully set
e ARKLS_MEM_NULL - arkode_mem was NULL
* ARKLS_LMEM_NULL - the linear solver interface has not been initialized

Warning

This function is provided for debugging purposes and the values in the returned matrix should not be altered.

Deprecated since version 6.1.0: Use ARKodeGetJac () instead.

int ARKStepGetJacTime (void *arkode_mem, sunrealtype *t_J)

Returns the time at which the internally stored copy of the Jacobian matrix of the ODE implicit right-hand side
function was evaluated.

Parameters
» arkode_mem — the ARKStep memory structure
* t_J — the time at which the Jacobian was evaluated
Return values
* ARKLS_SUCCESS - the output value has been successfully set
e ARKLS_MEM_NULL - arkode_mem was NULL
* ARKLS_LMEM_NULL - the linear solver interface has not been initialized
Deprecated since version 6.1.0: Use ARKodeGetJacTime () instead.

int ARKStepGetJacNumSteps (void *arkode_mem, long int *nst_J)

Returns the value of the internal step counter at which the internally stored copy of the Jacobian matrix of the
ODE implicit right-hand side function was evaluated.

Parameters

» arkode_mem — the ARKStep memory structure

* nst_J — the value of the internal step counter at which the Jacobian was evaluated
Return values

* ARKLS_SUCCESS — the output value has been successfully set

* ARKLS_MEM_NULL - arkode_mem was NULL

5.7. Using the ARKStep time-stepping module 239



User Documentation for ARKODE, v6.2.1

e ARKLS_LMEM_NULL - the linear solver interface has not been initialized
Deprecated since version 6.1.0: Use ARKodeGetJacNumSteps () instead.

int ARKStepGetLinWorkSpace (void *arkode_mem, long int *lenrwLS, long int *leniwLS)
Returns the real and integer workspace used by the ARKLS linear solver interface.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

¢ lenrwLS — the number of sunrealtype values in the ARKLS workspace.

* leniwLS — the number of integer values in the ARKLS workspace.
Return value:

e ARKLS _SUCCESS if successful

* ARKLS_MEM_NULL if the ARKStep memory was NULL

* ARKLS_LMEM_NULL if the linear solver memory was NULL

Notes:
The workspace requirements reported by this routine correspond only to memory allocated within this
interface and to memory allocated by the SUNLinearSolver object attached to it. The template Jacobian
matrix allocated by the user outside of ARKLS is not included in this report.

In a parallel setting, the above values are global (i.e. summed over all processors).
Deprecated since version 6.1.0: Use ARKodeGetLinliorkSpace () instead.

int ARKStepGetNumJacEvals (void *arkode_mem, long int *njevals)
Returns the number of Jacobian evaluations.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* njevals — number of Jacobian evaluations.
Return value:
* ARKLS_SUCCESS if successful
¢ ARKLS_MEM_NULL if the ARKStep memory was NULL
* ARKLS_LMEM_NULL if the linear solver memory was NULL

Note: This is only accumulated for the “life” of the linear solver object; the counter is reset whenever a new
linear solver module is “attached” to ARKStep, or when ARKStep is resized.

Deprecated since version 6.1.0: Use ARKodeGetNumJacEvals () instead.

int ARKStepGetNumPrecEvals (void *arkode_mem, long int *npevals)

Returns the total number of preconditioner evaluations, i.e. the number of calls made to psetup with jok =
SUNFALSE and that returned *jcurPtr = SUNTRUE.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* npevals — the current number of calls to psetup.
Return value:

e ARKLS_SUCCESS if successful

240 Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

* ARKLS_MEM_NULL if the ARKStep memory was NULL
* ARKLS_LMEM_NULL if the linear solver memory was NULL

Note: This is only accumulated for the “life” of the linear solver object; the counter is reset whenever a new
linear solver module is “attached” to ARKStep, or when ARKStep is resized.

Deprecated since version 6.1.0: Use ARKodeGetNumPrecEvals () instead.

int ARKStepGetNumPrecSolves (void *arkode_mem, long int *npsolves)

Returns the number of calls made to the preconditioner solve function, psolve.
Arguments:

* arkode_mem — pointer to the ARKStep memory block.

¢ npsolves — the number of calls to psolve.
Return value:

* ARKLS_SUCCESS if successful

* ARKLS_MEM_NULL if the ARKStep memory was NULL

* ARKLS_LMEM_NULL if the linear solver memory was NULL

Note: This is only accumulated for the “life” of the linear solver object; the counter is reset whenever a new
linear solver module is “attached” to ARKStep, or when ARKStep is resized.

Deprecated since version 6.1.0: Use ARKodeGetNumPrecSolves() instead.

int ARKStepGetNumLinIters (void *arkode_mem, long int *nliters)

Returns the cumulative number of linear iterations.
Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* nliters — the current number of linear iterations.
Return value:
e ARKLS_SUCCESS if successful
* ARKLS_MEM_NULL if the ARKStep memory was NULL
* ARKLS_LMEM_NULL if the linear solver memory was NULL

Note: This is only accumulated for the “life” of the linear solver object; the counter is reset whenever a new
linear solver module is “attached” to ARKStep, or when ARKStep is resized.

Deprecated since version 6.1.0: Use ARKodeGetNumLinIters() instead.

int ARKStepGetNumLinConvFails(void *arkode_mem, long int *nlcfails)

Returns the cumulative number of linear convergence failures.
Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* nlcfails — the current number of linear convergence failures.
Return value:

e ARKLS SUCCESS if successful

* ARKLS_MEM_NULL if the ARKStep memory was NULL

* ARKLS_LMEM_NULL if the linear solver memory was NULL

5.7. Using the ARKStep time-stepping module 241



User Documentation for ARKODE, v6.2.1

Note: This is only accumulated for the “life” of the linear solver object; the counter is reset whenever a new
linear solver module is “attached” to ARKStep, or when ARKStep is resized.

Deprecated since version 6.1.0: Use ARKodeGetNumLinConvFails() instead.

int ARKStepGetNumJTSetupEvals (void *arkode_mem, long int *njtsetup)

Returns the cumulative number of calls made to the user-supplied Jacobian-vector setup function, jtsetup.
Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* njtsetup — the current number of calls to jtsetup.
Return value:

e ARKLS SUCCESS if successful

* ARKLS_MEM_NULL if the ARKStep memory was NULL

* ARKLS_LMEM_NULL if the linear solver memory was NULL

Note: This is only accumulated for the “life” of the linear solver object; the counter is reset whenever a new
linear solver module is “attached” to ARKStep, or when ARKStep is resized.

Deprecated since version 6.1.0: Use ARKodeGetNumJTSetupEvals () instead.

int ARKStepGetNum]timesEvals (void *arkode_mem, long int *njvevals)
Returns the cumulative number of calls made to the Jacobian-vector product function, jtimes.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* njvevals — the current number of calls to jtimes.
Return value:
e ARKLS_SUCCESS if successful
* ARKLS_MEM_NULL if the ARKStep memory was NULL
* ARKLS_LMEM_NULL if the linear solver memory was NULL

Note: This is only accumulated for the “life” of the linear solver object; the counter is reset whenever a new
linear solver module is “attached” to ARKStep, or when ARKStep is resized.

Deprecated since version 6.1.0: Use ARKodeGetNumJtimesEvals () instead.

int ARKStepGetNumLinRhsEvals (void *arkode_mem, long int *nfevalsLS)

Returns the number of calls to the user-supplied implicit right-hand side function f7 for finite difference Jacobian
or Jacobian-vector product approximation.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* nfevalsLS — the number of calls to the user implicit right-hand side function.
Return value:

* ARKLS_SUCCESS if successful

* ARKLS_MEM_NULL if the ARKStep memory was NULL

* ARKLS_LMEM_NULL if the linear solver memory was NULL

242 Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

Notes:
The value nfevalsLS is incremented only if the default internal difference quotient function is used.

This is only accumulated for the “life” of the linear solver object; the counter is reset whenever a new linear
solver module is “attached” to ARKStep, or when ARKStep is resized.

Deprecated since version 6.1.0: Use ARKodeGetNumLinRhsEvals () instead.

int ARKStepGetLastLinFlag(void *arkode_mem, long int *Isflag)
Returns the last return value from an ARKLS routine.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

¢ Isflag — the value of the last return flag from an ARKLS function.
Return value:

* ARKLS_SUCCESS if successful

* ARKLS_MEM_NULL if the ARKStep memory was NULL

* ARKLS_LMEM_NULL if the linear solver memory was NULL

Notes:
If the ARKLS setup function failed when using the SUNLINSOL_DENSE or SUNLINSOL_BAND modules, then
the value of Isflag is equal to the column index (numbered from one) at which a zero diagonal element was
encountered during the LU factorization of the (dense or banded) Jacobian matrix. For all other failures,
Isflag is negative.

Otherwise, if the ARKLS setup function failed (ARKStepEvolve () returned ARK_LSETUP_FAIL), then
Isflag will be SUNLS_PSET_FAIL_UNREC, SUNLS_ASET_FAIL_UNREC or SUN_ERR_EXT_FAIL.

If the ARKLS solve function failed (ARKStepEvolve () returned ARK_LSOLVE_FAIL), then Isflag con-
tains the error return flag from the SUNLinearSolver object, which will be one of: SUN_ERR_ARG_COR-
RUPTRRUPT, indicating that the SUNLinearSolver memory is NULL; SUNLS_ATIMES_NULL, indicat-
ing that a matrix-free iterative solver was provided, but is missing a routine for the matrix-vector product
approximation, SUNLS_ATIMES _FAIL_UNREC, indicating an unrecoverable failure in the Jv function;
SUNLS_PSOLVE_NULL, indicating that an iterative linear solver was configured to use preconditioning,
but no preconditioner solve routine was provided, SUNLS_PSOLVE_FAIL_UNREC, indicating that the
preconditioner solve function failed unrecoverably; SUNLS_GS_FAIL, indicating a failure in the Gram-
Schmidt procedure (SPGMR and SPFGMR only); SUNLS_QRSOL_FAIL, indicating that the matrix R was
found to be singular during the QR solve phase (SPGMR and SPFGMR only); or SUN_ERR_EXT_FAIL,
indicating an unrecoverable failure in an external iterative linear solver package.

Deprecated since version 6.1.0: Use ARKodeGetLastLinFlag() instead.

char *ARKStepGetLinReturnFlagName (long int Isflag)
Returns the name of the ARKLS constant corresponding to Isflag.

Arguments:
¢ Isflag — a return flag from an ARKLS function.

Return value: The return value is a string containing the name of the corresponding constant. If using the
SUNLINSOL_DENSE or SUNLINSOL_BAND modules, then if 1 < Isflag < n (LU factorization failed), this routine
returns “NONE”.

Deprecated since version 6.1.0: Use ARKodeGetLinReturnFIlagName () instead.

5.7. Using the ARKStep time-stepping module 243



User Documentation for ARKODE, v6.2.1

int ARKStepGetMassWorkSpace (void *arkode_mem, long int *lenrwMLS, long int *leniwMLS)

Returns the real and integer workspace used by the ARKLS mass matrix linear solver interface.
Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* lenrwMLS — the number of sunrealtype values in the ARKLS mass solver workspace.

¢ leniwMLS — the number of integer values in the ARKLS mass solver workspace.
Return value:

* ARKLS_SUCCESS if successful

* ARKLS_MEM_NULL if the ARKStep memory was NULL

* ARKLS_LMEM_NULL if the linear solver memory was NULL

Notes:
The workspace requirements reported by this routine correspond only to memory allocated within this
interface and to memory allocated by the SUNLinearSolver object attached to it. The template mass
matrix allocated by the user outside of ARKLS is not included in this report.

In a parallel setting, the above values are global (i.e. summed over all processors).
Deprecated since version 6.1.0: Use ARKodeGetMasslorkSpace () instead.

int ARKStepGetNumMassSetups (void *arkode_mem, long int *nmsetups)

Returns the number of calls made to the ARKLS mass matrix solver ‘setup’ routine; these include all calls to the
user-supplied mass-matrix constructor function.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* nmsetups — number of calls to the mass matrix solver setup routine.
Return value:

e ARKLS _SUCCESS if successful

* ARKLS_MEM_NULL if the ARKStep memory was NULL

* ARKLS_LMEM_NULL if the linear solver memory was NULL

Note: This is only accumulated for the “life” of the linear solver object; the counter is reset whenever a new
mass-matrix linear solver module is “attached” to ARKStep, or when ARKStep is resized.

Deprecated since version 6.1.0: Use ARKodeGetNumMassSetups () instead.

int ARKStepGetNumMassMultSetups (void *arkode_mem, long int *nmvsetups)

Returns the number of calls made to the ARKLS mass matrix ‘matvec setup’ (matrix-based solvers) routine.
Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* nmvsetups — number of calls to the mass matrix matrix-times-vector setup routine.
Return value:

e ARKLS_SUCCESS if successful

* ARKLS_MEM_NULL if the ARKStep memory was NULL

* ARKLS_LMEM_NULL if the linear solver memory was NULL

244 Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

Note: This is only accumulated for the “life” of the linear solver object; the counter is reset whenever a new
mass-matrix linear solver module is “attached” to ARKStep, or when ARKStep is resized.

Deprecated since version 6.1.0: Use ARKodeGetNumMassMultSetups () instead.

int ARKStepGetNumMassMult (void *arkode_mem, long int *nmmults)

Returns the number of calls made to the ARKLS mass matrix ‘matvec’ routine (matrix-based solvers) or the
user-supplied mtimes routine (matris-free solvers).

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

» nmmults — number of calls to the mass matrix solver matrix-times-vector routine.
Return value:

e ARKLS _SUCCESS if successful

* ARKLS_MEM_NULL if the ARKStep memory was NULL

* ARKLS_LMEM_NULL if the linear solver memory was NULL

Note: This is only accumulated for the “life” of the linear solver object; the counter is reset whenever a new
mass-matrix linear solver module is “attached” to ARKStep, or when ARKStep is resized.

Deprecated since version 6.1.0: Use ARKodeGetNumMassMult () instead.

int ARKStepGetNumMassSolves (void *arkode_mem, long int *nmsolves)
Returns the number of calls made to the ARKLS mass matrix solver ‘solve’ routine.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* nmsolves — number of calls to the mass matrix solver solve routine.
Return value:

e ARKLS_SUCCESS if successful

* ARKLS_MEM_NULL if the ARKStep memory was NULL

* ARKLS_LMEM_NULL if the linear solver memory was NULL

Note: This is only accumulated for the “life” of the linear solver object; the counter is reset whenever a new
mass-matrix linear solver module is “attached” to ARKStep, or when ARKStep is resized.

Deprecated since version 6.1.0: Use ARKodeGetNumMassSolves() instead.

int ARKStepGetNumMassPrecEvals (void *arkode_mem, long int *nmpevals)

Returns the total number of mass matrix preconditioner evaluations, i.e. the number of calls made to psetup.
Arguments:

* arkode_mem — pointer to the ARKStep memory block.

e nmpevals — the current number of calls to psetup.
Return value:

e ARKLS_SUCCESS if successful

* ARKLS_MEM_NULL if the ARKStep memory was NULL

* ARKLS_LMEM_NULL if the linear solver memory was NULL

5.7. Using the ARKStep time-stepping module 245



User Documentation for ARKODE, v6.2.1

Note: This is only accumulated for the “life” of the linear solver object; the counter is reset whenever a new
mass-matrix linear solver module is “attached” to ARKStep, or when ARKStep is resized.

Deprecated since version 6.1.0: Use ARKodeGetNumMassPrecEvals () instead.

int ARKStepGetNumMassPrecSolves (void *arkode_mem, long int *nmpsolves)

Returns the number of calls made to the mass matrix preconditioner solve function, psolve.
Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* nmpsolves — the number of calls to psolve.
Return value:

e ARKLS SUCCESS if successful

* ARKLS_MEM_NULL if the ARKStep memory was NULL

* ARKLS_LMEM_NULL if the linear solver memory was NULL

Note: This is only accumulated for the “life” of the linear solver object; the counter is reset whenever a new
mass-matrix linear solver module is “attached” to ARKStep, or when ARKStep is resized.

Deprecated since version 6.1.0: Use ARKodeGetNumMassPrecSolves () instead.

int ARKStepGetNumMassIters (void *arkode_mem, long int *nmiters)

Returns the cumulative number of mass matrix solver iterations.
Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* nmiters — the current number of mass matrix solver linear iterations.
Return value:

e ARKLS_SUCCESS if successful

* ARKLS_MEM_NULL if the ARKStep memory was NULL

* ARKLS_LMEM_NULL if the linear solver memory was NULL

Note: This is only accumulated for the “life” of the linear solver object; the counter is reset whenever a new
mass-matrix linear solver module is “attached” to ARKStep, or when ARKStep is resized.

Deprecated since version 6.1.0: Use ARKodeGetNumMassIters() instead.

int ARKStepGetNumMassConvFails (void *arkode_mem, long int *nmcfails)
Returns the cumulative number of mass matrix solver convergence failures.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* nmcfails — the current number of mass matrix solver convergence failures.
Return value:

* ARKLS_SUCCESS if successful

* ARKLS_MEM_NULL if the ARKStep memory was NULL

* ARKLS_LMEM_NULL if the linear solver memory was NULL

246 Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

Note: This is only accumulated for the “life” of the linear solver object; the counter is reset whenever a new
mass-matrix linear solver module is “attached” to ARKStep, or when ARKStep is resized.

Deprecated since version 6.1.0: Use ARKodeGetNumMassConvFails() instead.

int ARKStepGetNumMTSetups (void *arkode_mem, long int *nmtsetup)

Returns the cumulative number of calls made to the user-supplied mass-matrix-vector product setup function,
mtsetup.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* nmtsetup — the current number of calls to mtsetup.
Return value:
e ARKLS _SUCCESS if successful
* ARKLS_MEM_NULL if the ARKStep memory was NULL
e ARKLS_LMEM_NULL if the linear solver memory was NULL

Note: This is only accumulated for the “life” of the linear solver object; the counter is reset whenever a new
mass-matrix linear solver module is “attached” to ARKStep, or when ARKStep is resized.

Deprecated since version 6.1.0: Use ARKodeGetNumMTSetups () instead.

int ARKStepGetLastMassFlag(void *arkode_mem, long int *mlsflag)
Returns the last return value from an ARKLS mass matrix interface routine.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* mlisflag — the value of the last return flag from an ARKLS mass matrix solver interface function.
Return value:

e ARKLS_SUCCESS if successful

* ARKLS_MEM_NULL if the ARKStep memory was NULL

* ARKLS_LMEM_NULL if the linear solver memory was NULL

Notes:
The values of msflag for each of the various solvers will match those described above for the function
ARKStepGetLastLinFlag().

Deprecated since version 6.1.0: Use ARKodeGetLastMassFlag() instead.

General usability functions

int ARKStepWriteParameters (void *arkode_mem, FILE *{p)
Outputs all ARKStep solver parameters to the provided file pointer.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* fp — pointer to use for printing the solver parameters.
Return value:

e ARK SUCCESS if successful

5.7. Using the ARKStep time-stepping module 247



User Documentation for ARKODE, v6.2.1

* ARK_MEM_NULL if the ARKStep memory was NULL

Notes:
The fp argument can be stdout or stderr, or it may point to a specific file created using fopen.

When run in parallel, only one process should set a non-NULL value for this pointer, since parameters for
all processes would be identical.

Deprecated since version 6.1.0: Use ARKodeliriteParameters () instead.

int ARKStepWriteButcher (void *arkode_mem, FILE *fp)
Outputs the current Butcher table(s) to the provided file pointer.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* fp — pointer to use for printing the Butcher table(s).
Return value:
e ARK SUCCESS if successful
e ARK_MEM_NULL if the ARKStep memory was NULL

Notes:
The fp argument can be stdout or stderr, or it may point to a specific file created using fopen.

If ARKStep is currently configured to run in purely explicit or purely implicit mode, this will output a single
Butcher table; if configured to run an ImEx method then both tables will be output.

When run in parallel, only one process should set a non-NULL value for this pointer, since tables for all
processes would be identical.

Deprecated since version 6.1.0: Use ARKStepGetCurrentButcherTables () and ARKodeButcherTable_-
Write() instead.

5.7.1.11 ARKStep re-initialization function

To reinitialize the ARKStep module for the solution of a new problem, where a prior call to ARKStepCreate () has been
made, the user must call the function ARKStepReInit (). The new problem must have the same size as the previous
one. This routine retains the current settings for all ARKstep module options and performs the same input checking
and initializations that are done in ARKStepCreate(), but it performs no memory allocation as it assumes that the
existing internal memory is sufficient for the new problem. A call to this re-initialization routine deletes the solution
history that was stored internally during the previous integration, and deletes any previously-set zstop value specified
via a call to ARKStepSetStopTime (). Following a successful call to ARKStepReInit (), call ARKStepEvolve()
again for the solution of the new problem.

The use of ARKStepReInit () requires that the number of Runge—Kutta stages, denoted by s, be no larger for the new
problem than for the previous problem. This condition is automatically fulfilled if the method order g and the problem
type (explicit, implicit, ImEx) are left unchanged.

When using the ARKStep time-stepping module, if there are changes to the linear solver specifications, the user should
make the appropriate calls to either the linear solver objects themselves, or to the ARKLS interface routines, as described
in §5.7.1.3. Otherwise, all solver inputs set previously remain in effect.

One important use of the ARKStepReInit () function is in the treating of jump discontinuities in the RHS functions.
Except in cases of fairly small jumps, it is usually more efficient to stop at each point of discontinuity and restart
the integrator with a readjusted ODE model, using a call to ARKStepReInit(). To stop when the location of the
discontinuity is known, simply make that location a value of tout. To stop when the location of the discontinuity
is determined by the solution, use the rootfinding feature. In either case, it is critical that the RHS functions not

248 Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

incorporate the discontinuity, but rather have a smooth extension over the discontinuity, so that the step across it (and
subsequent rootfinding, if used) can be done efficiently. Then use a switch within the RHS functions (communicated
through user_data) that can be flipped between the stopping of the integration and the restart, so that the restarted
problem uses the new values (which have jumped). Similar comments apply if there is to be a jump in the dependent
variable vector.

int ARKStepReInit (void *arkode_mem, ARKRAsFn fe, ARKRhsFn fi, sunrealtype t0, N_Vector y0)

Provides required problem specifications and re-initializes the ARKStep time-stepper module.
Arguments:
* arkode_mem — pointer to the ARKStep memory block.

¢ fe — the name of the C function (of type ARKRhsFn()) defining the explicit portion of the right-hand
side functionin M gy = fE(¢,y) + fL(t,y).

* fi — the name of the C function (of type ARKRhsFn()) defining the implicit portion of the right-hand
side function in M ¢ = fE(t,y) + f1(t,y).

* 10 — the initial value of ¢.
* y0 — the initial condition vector y(¢g).
Return value:
* ARK_SUCCESS if successful
e ARK_MEM_NULL if the ARKStep memory was NULL
* ARK_MEM_FAIL if a memory allocation failed
* ARK_ILL_INPUT if an argument had an illegal value.

Notes:
All previously set options are retained but may be updated by calling the appropriate “Set” functions.

If an error occurred, ARKStepReInit () also sends an error message to the error handler function.

5.7.1.12 ARKStep reset function

int ARKStepReset (void *arkode_mem, sunrealtype tR, N_Vector yR)

Resets the current ARKStep time-stepper module state to the provided independent variable value and dependent
variable vector.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* R — the value of the independent variable ¢.
* YR — the value of the dependent variable vector y(tg).
Return value:
e ARK_SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory was NULL
* ARK_MEM_FAIL if a memory allocation failed
e ARK_ILL_INPUT if an argument had an illegal value.

5.7. Using the ARKStep time-stepping module 249



User Documentation for ARKODE, v6.2.1

Notes:

By default the next call to ARKStepEvolve () will use the step size computed by ARKStep prior to calling
ARKStepReset (). To set a different step size or have ARKStep estimate a new step size use ARKStepSe-
tInitStep().

All previously set options are retained but may be updated by calling the appropriate “Set” functions.

If an error occurred, ARKStepReset () also sends an error message to the error handler function.

Deprecated since version 6.1.0: Use ARKodeReset () instead.

5.7.1.13 ARKStep system resize function

int ARKStepResize (void *arkode_mem, N_Vector yR, sunrealtype hscale, sunrealtype tR, ARKVecResizeFn resize,

void *resize_data)

Re-sizes ARKStep with a different state vector but with comparable dynamical time scale.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* YR — the newly-sized state vector, holding the current dependent variable values y(¢r).
* hscale — the desired time step scaling factor (i.e. the next step will be of size h*hscale).
* R — the current value of the independent variable ¢ (this must be consistent with yR).
* resize — the user-supplied vector resize function (of type ARKVecResizeFn().

* resize_data — the user-supplied data structure to be passed to resize when modifying internal ARKStep
vectors.

Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory was NULL
e ARK_NO_MALLOC if arkode_mem was not allocated.
* ARK_ILL_INPUT if an argument had an illegal value.

Notes:

If an error occurred, ARKStepResize () also sends an error message to the error handler function.

If inequality constraint checking is enabled a call to ARKStepResize () will disable constraint checking.
A call to ARKStepSetConstraints() is required to re-enable constraint checking.

Resizing the linear solver:

When using any of the SUNDIALS-provided linear solver modules, the linear solver memory structures
must also be resized. At present, none of these include a solver-specific “resize” function, so the linear solver
memory must be destroyed and re-allocated following each call to ARKStepResize (). Moreover, the ex-
isting ARKLS interface should then be deleted and recreated by attaching the updated SUNLinearSolver
(and possibly SUNMatrix) object(s) through calls to ARKStepSetLinearSolver(), and ARKStepSet-
MassLinearSolver().

If any user-supplied routines are provided to aid the linear solver (e.g. Jacobian construction, Jacobian-
vector product, mass-matrix-vector product, preconditioning), then the corresponding “set” routines must
be called again following the solver re-specification.

250

Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

Resizing the absolute tolerance array:
If using array-valued absolute tolerances, the absolute tolerance vector will be invalid after the call to ARK-
StepResize (), so the new absolute tolerance vector should be re-set following each call to ARKStepRe-
size() through a new call to ARKStepSVtolerances() and possibly ARKStepResVtolerance() if ap-
plicable.

If scalar-valued tolerances or a tolerance function was specified through either ARKStepSStolerances()
or ARKStepFtolerances (), then these will remain valid and no further action is necessary.

Example codes:
e examples/arkode/C_serial/ark_heatlD_adapt.c

Deprecated since version 6.1.0: Use ARKodeResize () instead.

5.7.1.14 Interfacing with MRIStep
When using ARKStep as the inner (fast) integrator with MRIStep, the utility function ARKStepCreateMRIStepIn-
nerStepper () should be used to wrap an ARKStep memory block as an MRIStepInnerStepper.

int ARKStepCreateMRIStepInnerStepper (void *inner_arkode_mem, MRIStepInnerStepper *stepper)
Wraps an ARKStep memory block as an MRIStepInnerStepper for use with MRIStep.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
o stepper —the MRIStepInnerStepper object.
Return value:
* ARK_SUCCESS if successful
* ARK_MEM_FAIL if a memory allocation failed
e ARK_ILL_INPUT if an argument had an illegal value.

Example usage:

/% fast (inner) and slow (outer) ARKODE objects */
void *inner_arkode_mem = NULL;
void *outer_arkode_mem = NULL;

/% MRIStepInnerStepper to wrap the inner (fast) ARKStep object */
MRIStepInnerStepper stepper = NULL;

/* create an ARKStep object, setting fast (inner) right-hand side
functions and the initial condition */
inner_arkode_mem = ARKStepCreate(ffe, ffi, t0, y®, sunctx);

/* setup ARKStep */

/* create MRIStepInnerStepper wrapper for the ARKStep memory block */
flag = ARKStepCreateMRIStepInnerStepper(inner_arkode_mem, &stepper);
/* create an MRIStep object, setting the slow (outer) right-hand side

functions and the initial condition */
outer_arkode_mem = MRIStepCreate(fse, fsi, t®, y0, stepper, sunctx);

5.7. Using the ARKStep time-stepping module 251



User Documentation for ARKODE, v6.2.1

Example codes:
e examples/arkode/CXX_parallel/ark_diffusion_reaction_p.cpp

Deprecated since version 6.2.0: Use ARKodeCreateMRIStepInnerStepper () instead.

5.7.2 Relaxation Methods

This section describes ARKStep-specific user-callable functions for applying relaxation methods with ARKStep. All of
these routines have been deprecated in favor of shared ARKODE-level routines, but this documentation will be retained
for as long as these functions are present in the library.

5.7.2.1 Enabling or Disabling Relaxation

int ARKStepSetRelaxFn(void *arkode_mem, ARKRelaxFn rfn, ARKRelaxJacFn rjac)

Attaches the user supplied functions for evaluating the relaxation function (rfn) and its Jacobian (rjac).

Both rfn and rjac are required and an error will be returned if only one of the functions is NULL. If both rfn
and rjac are NULL, relaxation is disabled.

With DIRK and IMEX-ARK methods or when a fixed mass matrix is present, applying relaxation requires allo-
cating s additional state vectors (where s is the number of stages in the method).

Parameters

» arkode_mem — the ARKStep memory structure

* rfn - the user-defined function to compute the relaxation function &(y)

* rjac - the user-defined function to compute the relaxation Jacobian &’(y)
Return values

* ARK_SUCCESS — the function exited successfully

* ARK_MEM_NULL — arkode_mem was NULL

e ARK_ILL_INPUT - an invalid input combination was provided (see the output error message
for more details)

* ARK_MEM_FAIL — a memory allocation failed

Warning

Applying relaxation requires using a method of at least second order with b¥ > 0 and b/ > 0. If these
conditions are not satisfied, ARKStepEvolve () will return with an error during initialization.

Note

When combined with fixed time step sizes, ARKStep will attempt each step using the specified step size. If
the step is successful, relaxation will be applied, effectively modifying the step size for the current step. If
the step fails or applying relaxation fails, ARKStepEvolve () will return with an error.

Added in version 5.6.0.

Deprecated since version 6.1.0: Use ARKodeSetRelaxFn() instead.

252 Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

5.7.2.2 Optional Input Functions

This section describes optional input functions used to control applying relaxation.

int ARKStepSetRelaxEtaFail (void *arkode_mem, sunrealtype eta_rf)

Sets the step size reduction factor applied after a failed relaxation application.
The default value is 0.25. Input values < 0 or > 1 will result in the default value being used.
Parameters
» arkode_mem — the ARKStep memory structure
» eta_rf - the step size reduction factor
Return values
* ARK_SUCCESS — the value was successfully set
* ARK_MEM_NULL — arkode_mem was NULL
e ARK_RELAX_MEM_NULL - the internal relaxation memory structure was NULL
Added in version 5.6.0.
Deprecated since version 6.1.0: Use ARKodeSetRelaxEtaFail() instead.

int ARKStepSetRelaxLowerBound (void *arkode_mem, sunrealtype lower)

Sets the smallest acceptable value for the relaxation parameter.

Values smaller than the lower bound will result in a failed relaxation application and the step will be repeated
with a smaller step size (determined by ARKStepSetRelaxEtaFail()).

The default value is 0.8. Input values < 0 or > 1 will result in the default value being used.
Parameters
» arkode_mem — the ARKStep memory structure
* lower - the relaxation parameter lower bound
Return values
* ARK_SUCCESS - the value was successfully set
e ARK_MEM_NULL - arkode_mem was NULL
* ARK_RELAX_MEM_NULL — the internal relaxation memory structure was NULL
Added in version 5.6.0.
Deprecated since version 6.1.0: Use ARKodeSetRelaxLowerBound () instead.

int ARKStepSetRelaxUpperBound (void *arkode_mem, sunrealtype upper)

Sets the largest acceptable value for the relaxation parameter.

Values larger than the upper bound will result in a failed relaxation application and the step will be repeated with
a smaller step size (determined by ARKStepSetRelaxEtaFail()).

The default value is 1.2. Input values < 1 will result in the default value being used.
Parameters
» arkode_mem — the ARKStep memory structure
* upper — the relaxation parameter upper bound

Return values

5.7. Using the ARKStep time-stepping module 253



User Documentation for ARKODE, v6.2.1

* ARK_SUCCESS - the value was successfully set

* ARK_MEM_NULL — arkode_mem was NULL

e ARK_RELAX MEM_NULL - the internal relaxation memory structure was NULL
Added in version 5.6.0.
Deprecated since version 6.1.0: Use ARKodeSetRelaxUpperBound () instead.

int ARKStepSetRelaxMaxFails (void *arkode_mem, int max_fails)
Sets the maximum number of times applying relaxation can fail within a step attempt before the integration is
halted with an error.

The default value is 10. Input values < 0 will result in the default value being used.
Parameters
* arkode_mem — the ARKStep memory structure
* max_fails — the maximum number of failed relaxation applications allowed in a step
Return values
* ARK_SUCCESS - the value was successfully set
* ARK_MEM_NULL — arkode_mem was NULL
e ARK_RELAX MEM_NULL - the internal relaxation memory structure was NULL
Added in version 5.6.0.
Deprecated since version 6.1.0: Use ARKodeSetRelaxMaxFails() instead.

int ARKStepSetRelaxMaxIters (void *arkode_mem, int max_iters)
Sets the maximum number of nonlinear iterations allowed when solving for the relaxation parameter.

If the maximum number of iterations is reached before meeting the solve tolerance (determined by ARKStepSe-
tRelaxResTol () and ARKStepSetRelaxTol()), the step will be repeated with a smaller step size (determined
by ARKStepSetRelaxEtaFail()).

The default value is 10. Input values < 0 will result in the default value being used.
Parameters
» arkode_mem — the ARKStep memory structure
* max_iters - the maximum number of solver iterations allowed
Return values
* ARK_SUCCESS - the value was successfully set
e ARK_MEM_NULL - arkode_mem was NULL
* ARK_RELAX_MEM_NULL — the internal relaxation memory structure was NULL
Added in version 5.6.0.
Deprecated since version 6.1.0: Use ARKodeSetRelaxMaxIters() instead.

int ARKStepSetRelaxSolver (void *arkode_mem, ARKRelaxSolver solver)

Sets the nonlinear solver method used to compute the relaxation parameter.
The default value is ARK_RELAX_NEWTON
Parameters

» arkode_mem — the ARKStep memory structure

254 Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

* solver - the nonlinear solver to use
Return values

* ARK_SUCCESS — the value was successfully set
e ARK_MEM_NULL - arkode_mem was NULL
* ARK_RELAX_MEM_NULL — the internal relaxation memory structure was NULL
e ARK_ILL_INPUT - an invalid solver option was provided

Added in version 5.6.0.

Deprecated since version 6.1.0: Use ARKodeSetRelaxSolver () instead.

int ARKStepSetRelaxResTol (void *arkode_mem, sunrealtype res_tol)
Sets the nonlinear solver residual tolerance to use when solving (2.63).

If the residual or iteration update tolerance (see ARKStepSetRelaxMaxIters())is notreached within the max-
imum number of iterations (determined by ARKStepSetRelaxMaxIters()), the step will be repeated with a
smaller step size (determined by ARKStepSetRelaxEtaFail()).

The default value is 4e where € is floating-point precision. Input values < 0 will result in the default value being
used.

Parameters
» arkode_mem — the ARKStep memory structure
» res_tol - the nonlinear solver residual tolerance to use
Return values
* ARK_SUCCESS - the value was successfully set
e ARK_MEM_NULL - arkode_mem was NULL
* ARK_RELAX_MEM_NULL — the internal relaxation memory structure was NULL
Added in version 5.6.0.
Deprecated since version 6.1.0: Use ARKodeSetRelaxResTol () instead.

int ARKStepSetRelaxTol (void *arkode_mem, sunrealtype rel_tol, sunrealtype abs_tol)

Sets the nonlinear solver relative and absolute tolerance on changes in 7 iterates when solving (2.63).

If the residual (see ARKStepSetRelaxResTol ()) or iterate update tolerance is not reached within the maximum
number of iterations (determined by ARKStepSetRelaxMaxIters()), the step will be repeated with a smaller
step size (determined by ARKStepSetRelaxEtaFail()).

The default relative and absolute tolerances are 4e and 10~14, respectively, where € is floating-point precision.
Input values < 0 will result in the default value being used.

Parameters
» arkode_mem — the ARKStep memory structure
» rel_tol - the nonlinear solver relative solution tolerance to use
 abs_tol - the nonlinear solver absolute solution tolerance to use
Return values
* ARK_SUCCESS — the value was successfully set
e ARK_MEM_NULL - arkode_mem was NULL

5.7. Using the ARKStep time-stepping module 255



User Documentation for ARKODE, v6.2.1

* ARK_RELAX_MEM_NULL — the internal relaxation memory structure was NULL
Added in version 5.6.0.

Deprecated since version 6.1.0: Use ARKodeSetRelaxTol () instead.

5.7.2.3 Optional Output Functions
This section describes optional output functions used to retrieve information about the performance of the relaxation
method.

int ARKStepGetNumRelaxFnEvals (void *arkode_mem, long int *r_evals)
Get the number of times the user’s relaxation function was evaluated.

Parameters
» arkode_mem — the ARKStep memory structure
» r_evals — the number of relaxation function evaluations
Return values
» ARK_SUCCESS - the value was successfully set
* ARK_MEM_NULL — arkode_mem was NULL
e ARK_RELAX MEM_NULL - the internal relaxation memory structure was NULL
Added in version 5.6.0.
Deprecated since version 6.1.0: Use ARKodeGetNumRelaxFnEvals () instead.

int ARKStepGetNumRelaxJacEvals(void *arkode_mem, long int *J_evals)
Get the number of times the user’s relaxation Jacobian was evaluated.

Parameters
» arkode_mem — the ARKStep memory structure
* J_evals - the number of relaxation Jacobian evaluations
Return values
* ARK_SUCCESS — the value was successfully set
e ARK_MEM_NULL - arkode_mem was NULL
* ARK_RELAX_MEM_NULL — the internal relaxation memory structure was NULL
Added in version 5.6.0.
Deprecated since version 6.1.0: Use ARKodeGetNumRelaxJacEvals() instead.

int ARKStepGetNumRelaxFails (void *arkode_mem, long int *fails)

Get the total number of times applying relaxation failed.

The counter includes the sum of the number of nonlinear solver failures (see ARKStepGetNumRelaxSolve-
Fails()) and the number of failures due an unacceptable relaxation value (see ARKStepSetRelaxLower-
Bound() and ARKStepSetRelaxUpperBound()).

Parameters
» arkode_mem — the ARKStep memory structure

» fails - the total number of failed relaxation attempts

256 Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

Return values
* ARK_SUCCESS — the value was successfully set
e ARK_MEM_NULL - arkode_mem was NULL
e ARK_RELAX_MEM_NULL - the internal relaxation memory structure was NULL
Added in version 5.6.0.
Deprecated since version 6.1.0: Use ARKodeGetNumRelaxFails() instead.

int ARKStepGetNumRelaxBoundFails (void *arkode_mem, long int *fails)
Get the number of times the relaxation parameter was deemed unacceptable.

Parameters
» arkode_mem — the ARKStep memory structure
» fails — the number of failures due to an unacceptable relaxation parameter value
Return values
* ARK_SUCCESS - the value was successfully set
o ARK_MEM_NULL - arkode_mem was NULL
e ARK_RELAX MEM_NULL - the internal relaxation memory structure was NULL
Added in version 5.6.0.
Deprecated since version 6.1.0: Use ARKodeGetNumRelaxBoundFails () instead.

int ARKStepGetNumRelaxSolveFails (void *arkode_mem, long int *fails)

Get the number of times the relaxation parameter nonlinear solver failed.
Parameters
» arkode_mem — the ARKStep memory structure
» fails - the number of relaxation nonlinear solver failures
Return values
* ARK_SUCCESS — the value was successfully set
e ARK_MEM_NULL - arkode_mem was NULL
* ARK_RELAX_MEM_NULL — the internal relaxation memory structure was NULL
Added in version 5.6.0.
Deprecated since version 6.1.0: Use ARKodeGetNumRelaxSolveFails () instead.

int ARKStepGetNumRelaxSolveIters (void *arkode_mem, long int *iters)

Get the number of relaxation parameter nonlinear solver iterations.

Parameters
» arkode_mem — the ARKStep memory structure
* iters — the number of relaxation nonlinear solver iterations

Return values
* ARK_SUCCESS - the value was successfully set
e ARK_MEM_NULL — arkode_mem was NULL
* ARK_RELAX_MEM_NULL - the internal relaxation memory structure was NULL

5.7. Using the ARKStep time-stepping module

257



User Documentation for ARKODE, v6.2.1

Added in version 5.6.0.

Deprecated since version 6.1.0: Use ARKodeGetNumRelaxSolveIters() instead.

5.7.3 Multigrid Reduction in Time with XBraid

The prior sections discuss using ARKODE in a traditional sequential time integration setting i.e., the solution is ad-
vanced from one time to the next where all parallelism resides within the evaluation of a step e.g., the computation of
the right-hand side, (non)linear solves, vector operations etc. For example, when discretizing a partial differential equa-
tion using a method of lines approach the spatially-discretized equations comprise a large set of ordinary differential
equations that can be evolved with ARKODE. In this case the parallelization lies in decomposing the spatial domain
unknowns across distributed computational nodes. Considering the strong scaling case at a given spatial resolution, as
the problem is spread across greater numbers of computational nodes scalability in the spatial dimension is exhausted
and sequential time integration becomes a bottleneck. This bottleneck is largely driven by the hardware shift from
faster clock speeds to greater concurrency to achieve performance gains. In this case, at the spatial scaling limit and
with stagnant clock speeds, more time steps will lead to an increased runtime.

An alternative approach to sequential time integration is to solve for all time values simultaneously. One such approach
is multigrid reduction in time [40] (MGRIT) which uses a highly parallel iterative method to expose parallelism in the
time domain in addition to the spatial parallelization. Starting with an initial temporal grid the multilevel algorithm
constructs successively coarser time grids and uses each coarse grid solution to improve the solution at the next finer
scale. In the two level case the MGRIT algorithm is as follows:

1. Relax the solution on the fine grid (parallel-in-time)
2. Restrict the solution to the fine grid (time re-discretization).
3. Solve the residual equation on the coarse grid (serial-in-time).
4. Correct the fine grid solution (parallel-in-time).
Applying this algorithm recursively for the solve step above leads to the multilevel algorithm.

The XBraid library [1] implements the MGRIT algorithm in a non-intrusive manner, enabling the reuse of existing
software for sequential time integration. The following sections describe the ARKODE + XBraid interface and the
steps necessary to modify an existing code that already uses ARKODE’s ARKStep time-stepping module to also use
XBraid.

5.7.3.1 SUNBraid Interface

Interfacing ARKODE with XBraid requires defining two data structures. The first is the XBraid application data struc-
ture that contains the data necessary for carrying out a time step and is passed to every interface function (much like
the user data pointer in SUNDIALS packages). For this structure the SUNBraid interface defines the generic SUN-
BraidApp structure described below that serves as the basis for creating integrator-specific or user-defined interfaces
to XBraid. The second structure holds the problem state data at a certain time value. This structure is defined by the
SUNBraidVector structure and simply contains an N_Vector. In addition to the two data structures several functions
defined by the XBraid API are required. These functions include vector operations (e.g., computing vector sums or
norms) as well as functions to initialize the problem state, access the current solution, and take a time step.

The ARKBraid interface, built on the SUNBraidApp and SUNBraidVector structures, provides all the functionality
needed combine ARKODE and XBraid for parallel-in-time integration. As such, only a minimal number of changes
are necessary to update an existing code that uses ARKODE to also use XBraid.

258 Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

SUNBraidApp

As mentioned above the SUNBraid interface defines the SUNBraid App structure to hold the data necessary to compute
atime step. This structure, like other SUNDIALS generic objects, is defined as a structure consisting of an implementa-
tion specific content field and an operations structure comprised of a set of function pointers for implmentation-defined
operations on the object. Specifically the SUNBraidApp type is defined as

/% Define XBraid App structure */
struct _braid_App_struct
{

void *content;
SUNBraidOps ops;
1

/* Pointer to the interface object (same as braid_App) */
typedef struct _braid_App_struct *SUNBraidApp;

Here, the SUNBraidOps structure is defined as

/% Structure containing function pointers to operations */
struct _SUNBraidOps

{
int (*getvectmpl) (braid_App app, N_Vector *tmpl);
};

/* Pointer to operations structure */
typedef struct _SUNBraidOps *SUNBraidOps;

The generic SUNBraidApp defines and implements the generic operations acting on a SUNBraidApp object. These
generic functions are nothing but wrappers to access the specific implementation through the object’s operations struc-
ture. To illustrate this point we show below the implementation of the SUNBraidApp_GetVecTmpl () function:

/% Get a template vector from the integrator */

int SUNBraidApp_GetVecTmpl (braid_App app, N_Vector *y)

{
if (app->ops->getvectmpl == NULL) return SUNBRAID_OPNULL;
return app->ops->getvectmpl(app, Vy);

}

The SUNBraidApp operations are define below in §5.7.3.1.

SUNBraidOps

In this section we define the SUNBraidApp operations and, for each operation, we give the function signature, a de-
scription of the expected behavior, and an example usage of the function.

int SUNBraidApp_GetVecTmpl (braid_App app, N_Vector *y)
This function returns a vector to use as a template for creating new vectors with N_VCIlone ().

Parameters
* app - input, a SUNBraidApp instance (XBraid app structure).

* y — output, the template vector.

5.7. Using the ARKStep time-stepping module 259



User Documentation for ARKODE, v6.2.1

Returns
If this function is not implemented by the SUNBraidApp implementation (i.e., the function
pointer is NULL) then this function will return SUNBRAID_OPNULL. Otherwise the return value
depends on the particular SUNBraidApp implementation. Users are encouraged to utilize the
return codes defined in sundials/sundials_xbraid.h and listed in Table 5.2.

/* Get template vector */
flag = SUNBraidApp_GetVecTmpl (app, y_ptr);
if (flag != SUNBRAID_SUCCESS) return flag;

SUNBraidApp Utility Functions

In addition to the generic SUNBraid App operations the following utility functions are provided to assist in creating and
destroying a SUNBraidApp instance.

int SUNBraidApp_NewEmpty (braid_App *app)
This function creates a new SUNBraidApp instance with the content and operations initialized to NULL.

Parameters

* app - output, an empty SUNBraidApp instance (XBraid app structure).
Return values

» SUNBRAID_SUCCESS — if successful.

» SUNBRAID_ALLOCFAIL - if a memory allocation failed.

/* Create empty XBraid interface object */
flag = SUNBraidApp_NewEmpty(app_ptr);
if (flag !'= SUNBRAID_SUCCESS) return flag;

int SUNBraidApp_FreeEmpty (braid_App *app)
This function destroys an empty SUNBraidApp instance.

Parameters
* app - input, an empty SUNBraidApp instance (XBraid app structure).

Return values
SUNBRAID_SUCCESS - if successful.

/* Free empty XBraid interface object */
flag = SUNBraidApp_FreeEmpty(app_ptr);

Warning

This function does not free the SUNBraidApp object’s content structure. An implementation should free its
content before calling SUNBraidApp_FreeEmpty () to deallocate the base SUNBraidApp structure.

260 Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

SUNBraidVector

As mentioned above the SUNBraid interface defines the SUNBraid Vector structure to store a snapshot of solution data
at a single point in time and this structure simply contains an N_Vector. Specifically, the structure is defined as follows:

typedef struct _braid_Vector_struct *SUNBraidVector,
Pointer to vector wrapper (same as braid_Vector)

struct _braid_Vector_struct
N_Vectory
SUNDIALS N_Vector wrapped by the braid_Vector
To assist in creating creating and destroying this structure the following utility functions are provided.

int SUNBraidVector_New(N_Vector y, SUNBraidVector *u)
This function creates a new SUNBraidVector wrapping the N_Vector y.

Parameters
* y —input, the N_Vector to wrap.
* u - output, the SUNBraidVector wrapping y.
Return values
» SUNBRAID_SUCCESS - if successful.
» SUNBRAID_ILLINPUT —if yis NULL.
* SUNBRAID_ALLOCFAIL - if a memory allocation fails.

/* Create new vector wrapper */
flag = SUNBraidVector_New(y, u_ptr);
if (flag !'= SUNBRAID_SUCCESS) return flag;

Warning

The SUNBraidVector takes ownership of the wrapped N_Vector and as such the wrapped N_Vector is de-
stroyed when the SUNBraidVector is freed with SUNBraidVector_Free().

int SUNBraidVector_GetNVector (SUNBraidVector u, N_Vector *y)
This function retrieves the wrapped N_Vector from the SUNBraidVector.

Parameters
* u - input, the SUNBraidVector wrapping y.
* y — output, the wrapped N_Vector.
Return values
» SUNBRAID_SUCCESS - if successful.
e SUNBRAID_ILLINPUT - if u is NULL.
o SUNBRAID_MEMFAIL - if y is NULL.

5.7. Using the ARKStep time-stepping module 261



User Documentation for ARKODE, v6.2.1

/* Create new vector wrapper */
flag = SUNBraidVector_GetNVector(u, y_ptr);
if (flag !'= SUNBRAID_SUCCESS) return flag;

Finally, the SUNBraid interface defines the following vector operations acting on SUNBraidVectors, that consist of
thin wrappers to compatible SUNDIALS N_Vector operations.

int SUNBraidVector_Clone (braid_App app, braid_Vector u, braid_Vector *v_ptr)

This function creates a clone of the input SUNBraidVector and copies the values of the input vector u into the
output vector v_ptr using N_VClone() and N_VScale().

Parameters
* app — input, a SUNBraidApp instance (XBraid app structure).
* u - input, the SUNBraidVector to clone.
* v_ptr — output, the new SUNBraidVector.
Return values
» SUNBRAID_SUCCESS — if successful.
» SUNBRAID_ILLINPUT - if u is NULL.
* SUNBRAID_MEMFAIL - if the N_Vector y wrapped by u is NULL.
o SUNBRAID_ALLOCFAIL - if a memory allocation fails.

int SUNBraidVector_Free (braid_App app, braid_Vector u)
This function destroys the SUNBraidVector and the wrapped N_Vector using N_VDestroy ().

Parameters
* app — input, a SUNBraidApp instance (XBraid app structure).
* u - input, the SUNBraidVector to destroy.

Return values
SUNBRAID_SUCCESS - if successful.

int SUNBraidVector_Sum(braid_App app, braid_Real alpha, braid_Vector x, braid_Real beta, braid_Vector y)

This function computes the vector sum oz + By — y using N_VLinearSum().
Parameters
* app - input, a SUNBraidApp instance (XBraid app structure).
* alpha - input, the constant «.
* X — input, the vector x.
* beta - input, the constant 3.
* y — input/output, the vector y.
Return values
* SUNBRAID_SUCCESS - if successful.
o SUNBRAID_ILLINPUT —if x or y is NULL.
» SUNBRAID_MEMFAIL - if either of the wrapped N_Vectors are NULL.

262 Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

int SUNBraidVector_SpatialNorm(braid_App app, braid_Vector u, braid_Real *norm_ptr)

This function computes the 2-norm of the vector u using N_VDotProd().

Parameters
* app — input, a SUNBraidApp instance (XBraid app structure).
* u - input, the vector u.
* norm_ptr — output, the L2 norm of u.

Return values
* SUNBRAID_SUCCESS - if successful.
» SUNBRAID_ILLINPUT - if u is NULL.
» SUNBRAID_MEMFAIL - if the wrapped N_Vector is NULL.

int SUNBraidVector_BufSize (braid_App app, braid_Int *size_ptr, braid_BufferStatus bstatus)

This function returns the buffer size for messages to exchange vector data using SUNBraidApp_GetVecTmpl ()
and N_VBufSize().

Parameters

* app — input, a SUNBraidApp instance (XBraid app structure).

* size_ptr - output, the buffer size.

* bstatus - input, a status object to query for information on the message type.
Return values

» SUNBRAID_SUCCESS - if successful

» otherwise — an error flag from SUNBraidApp_GetVecTmpl () or N_VBufSize().

int SUNBraidVector_BufPack (braid_App app, braid_Vector u, void *buffer, braid_BufferStatus bstatus)
This function packs the message buffer for exchanging vector data using N_VBufPack ().

Parameters

* app - input, a SUNBraidApp instance (XBraid app structure).

* u - input, the vector to pack into the exchange buffer.

* buffer — output, the packed exchange buffer to pack.

* bstatus - input, a status object to query for information on the message type.
Return values

» SUNBRAID_SUCCESS - if successful.

» SUNBRAID_ILLINPUT - if u is NULL.

» otherwise — An error flag from N_VBufPack().

int SUNBraidVector_BufUnpack (braid_App app, void *buffer, braid_Vector *u_ptr, braid_BufferStatus bstatus)

This function unpacks the message buffer and creates a new N_Vector and SUNBraid Vector with the buffer data
using N_VBufUnpack (), SUNBraidApp_GetVecTmpl (), and N_VClone().

Parameters
* app - input, a SUNBraidApp instance (XBraid app structure).

* buffer - input, the exchange buffer to unpack.

5.7. Using the ARKStep time-stepping module 263



User Documentation for ARKODE, v6.2.1

* u_ptr — output, a new SUNBraidVector containing the buffer data.
* bstatus - input, a status object to query for information on the message type.
Return values
» SUNBRAID_SUCCESS - if successful.
» SUNBRAID_ILLINPUT - if buffer is NULL.
* SUNBRAID_ALLOCFAIL - if a memory allocation fails.
» otherwise — an error flag from SUNBraidApp_GetVecTmpl () and N_VBufUnpack().

SUNBraid Return Codes

The SUNBraid interface return values are given in Table 5.2.

Table 5.2: SUNBraid Return Codes

Return value name Value Meaning

SUNBRAID_SUCCESS 0 The call/operation was successful.
SUNBRAID_ALLOCFAIL -1 A memory allocation failed.
SUNBRAID_MEMFAIL =7 A memory access fail.
SUNBRAID_OPNULL -3 The SUNBraid operation is NULL.
SUNBRAID_ILLINPUT —4 An invalid input was provided.
SUNBRAID_BRAIDFAIL —5 An XBraid function failed.
SUNBRAID_SUNFAIL —6 A SUNDIALS function failed.

5.7.3.2 ARKBraid Interface

This section describes the ARKBraid implementation of a SUNBraidApp for using the ARKODE’s ARKStep time-
stepping module with XBraid. The following section §5.7.3.2 describes routines for creating, initializing, and destroy-
ing the ARKODE + XBraid interface, routines for setting optional inputs, and routines for retrieving data from an
ARKBraid instance. As noted above, interfacing with XBraid requires providing functions to initialize the problem
state, access the current solution, and take a time step. The default ARKBraid functions for each of these actions are
defined in §5.7.3.2 and may be overridden by user-defined if desired. A skeleton of the user’s main or calling pro-
gram for using the ARKBraid interface is given in §5.7.3.3. Finally, for advanced users that wish to create their own
SUNBraidApp implementation using ARKODE, §5.7.3.4 describes some helpful functions available to the user.

ARKBraid Initialization and Deallocation Functions

This section describes the functions that are called by the user to create, initialize, and destroy an ARKBraid instance.
Each user-callable function returns SUNBRAID_SUCCESS (i.e., 0) on a successful call and a negative value if an error
occurred. The possible return codes are given in Table 5.2.

int ARKBraid_Create (void *arkode_mem, braid_App *app)

This function creates a SUNBraid App object, sets the content pointer to the private ARKBraid interface structure,
and attaches the necessary SUNBraidOps implementations.

Parameters
» arkode_mem — input, a pointer to an ARKODE memory structure.

* app - output, an ARKBraid instance (XBraid app structure).

264 Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

Return values
* SUNBRAID_SUCCESS - if successful.
e SUNBRAID_ILLINPUT — arkode_mem is NULL.
» SUNBRAID_ALLOCFAIL - if a memory allocation failed.

Warning

The ARKBraid interface is ARKStep-specific. Although one could eventually construct an XBraid interface
to other of ARKODE time-stepping modules (e.g., ERKStep or MRIStep), those are not currently supported
by this implementation.

int ARKBraid_BraidInit (MPI_Comm comm_w, MPI_Comm comm_t, sunrealtype tstart, sunrealtype tstop,
sunindextype ntime, braid_App app, braid_Core *core)

This function wraps the XBraid braid_Init () function to create the XBraid core memory structure and ini-
tializes XBraid with the ARKBraid and SUNBraidVector interface functions.

Parameters
» comm_w — input, the global MPI communicator for space and time.
e comm_t — input, the MPI communicator for the time dimension.
* tstart - input, the initial time value.
* tstop — input, the final time value.
* ntime - input, the initial number of grid points in time.
* app - input, an ARKBraid instance.
* core — output, the XBraid core memory structure.
Return values
» SUNBRAID_SUCCESS — if successful.

e SUNBRAID_ILLINPUT - if either MPI communicator is MPI_COMM_NULL, if ntime < 2, or if
app or its content is NULL.

e SUNBRAID_BRAIDFAIL - if the braid_Init () call fails. The XBraid return value can be
retrieved with ARKBraid_GetLastBraidFlag().

Note

If desired, the default functions for vector initialization, accessing the solution, taking a time step, and com-
puting the spatial norm should be overridden before calling this function. See §5.7.3.2 for more details.

Warning

The user is responsible for deallocating the XBraid core memory structure with the XBraid function braid_-
Destroy().

int ARKBraid_Free (braid_App *app)
This function deallocates an ARKBraid instance.

5.7. Using the ARKStep time-stepping module 265



User Documentation for ARKODE, v6.2.1

Parameters
* app - input, a pointer to an ARKBraid instance.

Return values
SUNBRAID_SUCCESS — if successful.

ARKBraid Set Functions

This section describes the functions that are called by the user to set optional inputs to control the behavior of an
ARKBraid instance or to provide alternative XBraid interface functions. Each user-callable function returns SUN-
BRATID_SUCCESS (i.e., 0) on a successful call and a negative value if an error occurred. The possible return codes are
given in Table 5.2.

int ARKBraid_SetStepFn(braid_App app, braid_PtFcnStep step)
This function sets the step function provided to XBraid (default ARKBraid_Step()).

Parameters

* app - input, an ARKBraid instance.

* step — input, an XBraid step function. If step is NULL, the default function will be used.
Return values

o SUNBRAID_SUCCESS - if successful.

» SUNBRAID_ILLINPUT - if app is NULL.

o SUNBRAID_MEMFAIL - if the app content is NULL.

Note

This function must be called prior to ARKBraid_BraidInit().

int ARKBraid_SetInitFn(braid_App app, braid_PtFcnlnit init)
This function sets the vector initialization function provided to XBraid (default ARKBraid_Init()).

Parameters
* app - input, an ARKBraid instance.

e init - input, an XBraid vector initialization function. If init is NULL, the default function
will be used.

Return values
» SUNBRAID_SUCCESS - if successful.
» SUNBRAID_ILLINPUT - if app is NULL.
» SUNBRAID_MEMFAIL - if the app content is NULL.

Note

This function must be called prior to ARKBraid_BraidInit().

266 Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

int ARKBraid_SetSpatialNormFn(braid_App app, braid_PtFcnSpatialNorm snorm)
This function sets the spatial norm function provided to XBraid (default SUNBraidVector_SpatialNorm()).

Parameters
* app - input, an ARKBraid instance.

* snorm — input, an XBraid spatial norm function. If snorm is NULL, the default function will
be used.

Return values
* SUNBRAID_SUCCESS - if successful.
o SUNBRAID_ILLINPUT - if app is NULL.
o SUNBRAID_MEMFAIL - if the app content is NULL.

Note

This function must be called prior to ARKBraid_BraidInit().

int ARKBraid_SetAccessFn(braid_App app, braid_PtFcnAccess access)

This function sets the user access function provided to XBraid (default ARKBraid_Access()).
Parameters
* app - input, an ARKBraid instance.

» init - input, an XBraid user access function. If access is NULL, the default function will be
used.

Return values
» SUNBRAID_SUCCESS - if successful.
» SUNBRAID_ILLINPUT - if app is NULL.
o SUNBRAID_MEMFAIL - if the app content is NULL.

Note

This function must be called prior to ARKBraid_BraidInit().

ARKBraid Get Functions

This section describes the functions that are called by the user to retrieve data from an ARKBraid instance. Each user-
callable function returns SUNBRAID_SUCCESS (i.e., 0) on a successful call and a negative value if an error occurred.
The possible return codes are given in Table 5.2.

int ARKBraid_GetVecTmpl (braid_App app, N_Vector *tmpl)

This function returns a vector from the ARKODE memory to use as a template for creating new vectors with
N_VClone() i.e., this is the ARKBraid implementation of SUNBraidApp_GetVecTmpl().

Parameters
* app - input, an ARKBraid instance.

* tmpl - output, a template vector.

5.7. Using the ARKStep time-stepping module 267



User Documentation for ARKODE, v6.2.1

Return values
* SUNBRAID_SUCCESS - if successful.
o SUNBRAID_ILLINPUT - if app is NULL.
» SUNBRAID_MEMFAIL - if the app content or ARKODE memory is NULL.

int ARKBraid_GetARKodeMem (braid_App app, void **arkode_mem)
This function returns the ARKODE memory structure pointer attached with ARKBraid_Create().

Parameters

* app - input, an ARKBraid instance.

» arkode_mem — output, a pointer to the ARKODE memory structure.
Return values

* SUNBRAID_SUCCESS - if successful.

o SUNBRAID_ILLINPUT - if app is NULL.

» SUNBRAID_MEMFAIL - if the app content or ARKODE memory is NULL.

int ARKBraid_GetARKStepMem (braid_App app, void **arkode_mem)
This function returns the ARKStep memory structure pointer attached with ARKBraid_Create().

Parameters

* app - input, an ARKBraid instance.

» arkode_mem — output, a pointer to the ARKStep memory structure.
Return values

» SUNBRAID_SUCCESS - if successful.

» SUNBRAID_ILLINPUT - if app is NULL.

o SUNBRAID_MEMFAIL - if the app content or ARKStep memory is NULL.

Deprecated since version 6.1.0: Use ARKBraid_GetARKodelMem() instead.

int ARKBraid_GetUserData (braid_App app, void **user_data)
This function returns the user data pointer attached with ARKodeSetUserData().

Parameters
* app - input, an ARKBraid instance.
» user_data - output, a pointer to the user data structure.
Return values
» SUNBRAID_SUCCESS — if successful.
o SUNBRAID_ILLINPUT - if app is NULL.
» SUNBRAID_MEMFAIL - if the app content or ARKODE memory is NULL.

int ARKBraid_GetLastBraidFlag(braid_App app, int *last_flag)
This function returns the return value from the most recent XBraid function call.

Parameters
* app - input, an ARKBraid instance.

» last_flag - output, the XBraid return value.

268 Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

Return values
» SUNBRAID_SUCCESS — if successful.
e SUNBRAID_ILLINPUT - if app is NULL.
o SUNBRAID_MEMFAIL - if the app content is NULL.
int ARKBraid_GetLastARKodeFlag(braid_App app, int *last_flag)

This function returns the return value from the most recent ARKODE function call.

Parameters
* app - input, an ARKBraid instance.
» last_flag - output, the ARKODE return value.

Return values
* SUNBRAID_SUCCESS - if successful.
o SUNBRAID_ILLINPUT - if app is NULL.
o SUNBRAID_MEMFAIL - if the app content is NULL.

int ARKBraid_GetLastARKStepFlag(braid_App app, int *last_flag)

This function returns the return value from the most recent ARKStep function call.
Parameters
* app - input, an ARKBraid instance.
» last_flag - output, the ARKStep return value.
Return values
» SUNBRAID_SUCCESS - if successful.
» SUNBRAID_ILLINPUT - if app is NULL.
o SUNBRAID_MEMFAIL - if the app content is NULL.
Deprecated since version 6.1.0: Use ARKBraid_GetLastARKodeFlag() instead.

int ARKBraid_GetSolution(braid_App app, sunrealtype *tout, N_Vector yout)
This function returns final time and state stored with the default access function ARKBraid_Access().

Parameters
* app - input, an ARKBraid instance.
» last_flag - output, the ARKODE return value.
Return values
» SUNBRAID_SUCCESS — if successful.
» SUNBRAID_ILLINPUT - if app is NULL.
* SUNBRAID_MEMFAIL - if the app content or the stored vector is NULL.

Warning

If providing a non-default access function the final time and state are not stored within the ARKBraid structure
and this function will return an error. In this case the user should allocate space to store any desired output

5.7. Using the ARKStep time-stepping module 269



User Documentation for ARKODE, v6.2.1

within the user data pointer attached to ARKODE with ARKodeSetUserData(). This user data pointer can
be retrieved from the ARKBraid structure with ARKBraid_GetUserData().

ARKBraid Interface Functions

This section describes the default XBraid interface functions provided by ARKBraid and called by XBraid to perform
certain actions. Any or all of these functions may be overridden by supplying a user-defined function through the set
functions defined in §5.7.3.2. Each default interface function returns SUNBRAID_SUCCESS (i.e., 0) on a successful call
and a negative value if an error occurred. The possible return codes are given in Table 5.2.

int ARKBraid_Step (braid_App app, braid_Vector ustop, braid_Vector fstop, braid_Vector u, braid_StepStatus
status)

This is the default step function provided to XBraid. The step function is called by XBraid to advance the vector u
from one time to the next using the ARStep memory structure provided to ARKBraid_Create (). A user-defined
step function may be set with ARKBraid_SetStepFn().

Parameters
* app - input, an ARKBraid instance.
* ustop — input, u vector at the new time zstop.
» fstop - input, the right-hand side vector at the new time zstop.
* u - input/output, on input the vector at the start time and on return the vector at the new time.

* status - input, a status object to query for information about u and to steer XBraid e.g., for
temporal refinement.

Return values
* SUNBRAID_SUCCESS - if successful.
» SUNBRAID_ILLINPUT - if app is NULL.
» SUNBRAID_MEMFAIL - if the app content or ARKODE memory is NULL.

e SUNBRAID_BRAIDFAIL — if an XBraid function fails. The return value can be retrieved with
ARKBraid_GetLastBraidFlag().

SUNBRAID_SUNFAIL —if a SUNDIALS function fails. The return value can be retrieved with
ARKBraid_GetLastARKStepFlag().

Note

If providing a non-default implementation of the step function the utility function ARKBraid_TakeStep()
should be used to advance the input vector u to the new time.

int ARKBraid_Init (braid_App app, sunrealtype t, braid_Vector *u_ptr)

This is the default vector initialization function provided to XBraid. The initialization function is called by
XBraid to create a new vector and set the initial guess for the solution at time ¢. When using this default function
the initial guess at all time values is the initial condition provided to ARKStepCreate(). A user-defined init
function may be set with ARKBraid_SetInitFn().

Parameters

* app - input, an ARKBraid instance.

270 Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

* t —input, the initialization time for the output vector.
* u_ptr — output, the new and initialized SUNBraid Vector.
Return values
» SUNBRAID_SUCCESS - if successful.
» SUNBRAID_ILLINPUT - if app is NULL.
* SUNBRAID_MEMFAIL - if the app content or ARKODE memory is NULL.
» SUNBRAID_ALLOCFAIL - if a memory allocation failed.

Note

If providing a non-default implementation of the vector initialization function the utility functions SUN-
BraidApp_GetVecTmpl () and SUNBraidVector_New() can be helpful when creating the new vector re-
turned by this function.

int ARKBraid_Access (braid_App app, braid_Vector u, braid_AccessStatus astatus)

This is the default access function provided to XBraid. The access function is called by XBraid to retrieve the
current solution. When using this default function the final solution time and state are stored within the ARKBraid
structure. This information can be retrieved with ARKBraid_GetSolution(). A user-defined access function
may be set with ARKBraid_SetAccessFn().

Parameters

* app - input, an ARKBraid instance.

* u - input, the vector to be accessed.

* status — input, a status object to query for information about u.
Return values

» SUNBRAID_SUCCESS - if successful.

» SUNBRAID_ILLINPUT - if any of the inputs are NULL.

» SUNBRAID_MEMFAIL - if the app content, the wrapped N_Vector, or the ARKODE memory
is NULL.

» SUNBRAID_ALLOCFAIL - if allocating storage for the final solution fails.

e SUNBRAID_BRAIDFAIL - if an XBraid function fails. The return value can be retrieved with
ARKBraid_GetLastBraidFlag().

5.7.3.3 A skeleton of the user’s main program with XBraid

In addition to the header files required for the integration of the ODE problem (see the section §5.1), to use the ARK-
Braid interface, the user’s program must include the header file arkode/arkode_xbraid.h which declares the needed
function prototypes.

The following is a skeleton of the user’s main program (or calling program) for the integration of an ODE IVP using
ARKODE’s ARKStep time-stepping module with XBraid for parallel-in-time integration. Most steps are unchanged
from the skeleton program presented in §5.2. New or updated steps are bold.

1. Initialize MPI

If parallelizing in space and time split the global communicator into communicators for space and time with
braid_SplitCommworld().

5.7. Using the ARKStep time-stepping module 271



User Documentation for ARKODE, v6.2.1

O 0 9 N W B W

15.

16.

17.

18.

19.

20.

21.

22.
23.

24.

. Set problem dimensions

. Set vector of initial values

. Create ARKStep object

. Specify integration tolerances

. Create matrix object

. Create linear solver object

. Set linear solver optional inputs
. Attach linear solver module

10.
11.
12.
13.
14.

Create nonlinear solver object
Attach nonlinear solver module

Set nonlinear solver optional inputs
Set optional inputs

Create ARKBraid interface

Call the constructor ARKBraid_Create() to create the XBraid app structure.

Set optional ARKBraid inputs
See §5.7.3.2 for ARKBraid inputs.
Initialize the ARKBraid interface

Call the initialization function ARKBraid_BraidInit () to create the XBraid core memory structure and attach

the ARKBraid interface app and functions.

Set optional XBraid inputs

See the XBraid documentation for available XBraid options.
Evolve the problem

Call braid_Drive() to evolve the problem with MGRIT.
Get optional outputs

See §5.7.3.2 for ARKBraid outputs.

Deallocate memory for solution vector

Free solver memory

Free linear solver memory

Free ARKBraid and XBraid memory

Call ARKBraid_Free() and braid_Destroy to deallocate the ARKBraid interface and and XBraid core mem-

ory structures, respectively.

Finalize MPI

272

Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

5.7.3.4 Advanced ARKBraid Utility Functions

This section describes utility functions utilized in the ARKODE + XBraid interfacing. These functions are used inter-
nally by the above ARKBraid interface functions but are exposed to the user to assist in advanced usage of ARKODE
and XBraid that requires defining a custom SUNBraidApp implementation.

int ARKBraid_TakeStep (void *arkode_mem, sunrealtype tstart, sunrealtype tstop, N_Vector y, int *ark_flag)

This function advances the vector y from tstart to tstop using a single ARKODE time step with step size h =
tstop - start.

Parameters
» arkode_mem — input, the ARKODE memory structure pointer.
* tstart - input, the step start time.
* tstop — input, the step stop time.

* y — input/output, on input the solution a tstop and on return, the solution at time tstop if the
step was successful (ark_flag > 0) or the solution at time tstart if the step failed (ark_flag <
0).

e ark_flag - output, the step status flag. If ark_flag is:
= 0 then the step succeeded and, if applicable, met the requested temporal accuracy.
> 0 then the step succeeded but failed to meet the requested temporal accuracy.
< 0 then the step failed e.g., a solver failure occurred.

Returns
If all ARKODE function calls are successful the return value is ARK_SUCCESS, otherwise the
return value is the error flag returned from the function that failed.

5.8 Using the ERKStep time-stepping module

This section is concerned with the use of the ERKStep time-stepping module for the solution of initial value problems
(IVPs) in a C or C++ language setting. Usage of ERKStep follows that of the rest of ARKODE, and so in this section
we primarily focus on those usage aspects that are specific to ERKStep.

5.8.1 ERKStep User-callable functions

This section describes the ERKStep-specific functions that may be called by the user to setup and then solve an IVP
using the ERKStep time-stepping module. The large majority of these routines merely wrap underlying ARKODE
Jfunctions, and are now deprecated — each of these are clearly marked. However, some of these user-callable functions
are specific to ERKStep, as explained below.

As discussed in the main ARKODE user-callable function introduction, each of ARKODE’s time-stepping modules
clarifies the categories of user-callable functions that it supports. ERKStep supports the following categories:

* temporal adaptivity
* relaxation Runge—Kutta methods

ERKStep also has forcing function support when converted to a SUNStepper or MRIStepInnerStepper. See
ARKodeCreateSUNStepper () and ARKStepCreateMRIStepInnerStepper () for additional details.

5.8. Using the ERKStep time-stepping module 273



User Documentation for ARKODE, v6.2.1

5.8.1.1 ERKStep initialization and deallocation functions

void *ERKStepCreate (ARKRhsFn f, sunrealtype t0, N_Vector y0, SUNContext sunctx)

This function allocates and initializes memory for a problem to be solved using the ERKStep time-stepping
module in ARKODE.

Arguments:
 f — the name of the C function (of type ARKRhsFn()) defining the right-hand side function in y =
ft,y).
* {0 — the initial value of t.
* y0 — the initial condition vector y(tg).
* sunctx —the SUNContext object (see §4.2)

Return value:
If successful, a pointer to initialized problem memory of type void¥*, to be passed to all user-facing ERK-
Step routines listed below. If unsuccessful, a NULL pointer will be returned, and an error message will be
printed to stderr.

void ERKStepFree (void **arkode_mem)
This function frees the problem memory arkode_mem created by ERKStepCreate().

Arguments:
* arkode_mem — pointer to the ERKStep memory block.
Return value: None

Deprecated since version 6.1.0: Use ARKodeFree () instead.

5.8.1.2 ERKStep tolerance specification functions

int ERKStepSStolerances (void *arkode_mem, sunrealtype reltol, sunrealtype abstol)

This function specifies scalar relative and absolute tolerances.
Arguments:
* arkode_mem — pointer to the ERKStep memory block.
* reltol — scalar relative tolerance.
* abstol — scalar absolute tolerance.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ERKStep memory was NULL
* ARK_NO_MALLOC if the ERKStep memory was not allocated by the time-stepping module
* ARK_ILL_INPUT if an argument had an illegal value (e.g. a negative tolerance).
Deprecated since version 6.1.0: Use ARKodeSStolerances () instead.

int ERKStepSVtolerances (void *arkode_mem, sunrealtype reltol, N_Vector abstol)

This function specifies a scalar relative tolerance and a vector absolute tolerance (a potentially different absolute
tolerance for each vector component).

Arguments:

274 Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

* arkode_mem — pointer to the ERKStep memory block.

* reltol — scalar relative tolerance.

* abstol — vector containing the absolute tolerances for each solution component.
Return value:

e ARK_SUCCESS if successful

* ARK_MEM_NULL if the ERKStep memory was NULL

* ARK_NO_MALLOC if the ERKStep memory was not allocated by the time-stepping module

* ARK_ILL_INPUT if an argument had an illegal value (e.g. a negative tolerance).
Deprecated since version 6.1.0: Use ARKodeSVtolerances () instead.

int ERKStepWFtolerances (void *arkode_mem, ARKEwtFn efun)
This function specifies a user-supplied function efun to compute the error weight vector ewt.

Arguments:
* arkode_mem — pointer to the ERKStep memory block.

* efun — the name of the function (of type ARKEwtFn()) that implements the error weight vector com-
putation.

Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ERKStep memory was NULL
* ARK_NO_MALLOC if the ERKStep memory was not allocated by the time-stepping module

Deprecated since version 6.1.0: Use ARKodelWFtolerances () instead.

5.8.1.3 Rootfinding initialization function

int ERKStepRootInit (void *arkode_mem, int nrtfn, ARKRootFn g)

Initializes a rootfinding problem to be solved during the integration of the ODE system. It must be called after
ERKStepCreate(), and before ERKStepEvolve().

Arguments:
* arkode_mem — pointer to the ERKStep memory block.
* nrtfn — number of functions g;, an integer > 0.

* g —name of user-supplied function, of type ARKRootFn (), defining the functions g; whose roots are
sought.

Return value:
e ARK_SUCCESS if successful
* ARK_MEM_NULL if the ERKStep memory was NULL
* ARK_MEM_FAIL if there was a memory allocation failure
e ARK_ILL_INPUT if nrtfn is greater than zero but g = NULL.

5.8. Using the ERKStep time-stepping module 275



User Documentation for ARKODE, v6.2.1

To disable the rootfinding feature after it has already been initialized, or to free memory associated with
ERKStep’s rootfinding module, call ERKStepRootInit with nrifn = 0.

Similarly, if a new IVP is to be solved with a call to ERKStepReInit (), where the new IVP has no rootfind-
ing problem but the prior one did, then call ERKStepRootInit with nrtfn = 0.

Deprecated since version 6.1.0: Use ARKodeRootInit () instead.

5.8.1.4 ERKStep solver function

int ERKStepEvolve (void *arkode_mem, sunrealtype tout, N_Vector yout, sunrealtype *tret, int itask)

Integrates the ODE over an interval in £.

Arguments:

* arkode_mem — pointer to the ERKStep memory block.

* tout — the next time at which a computed solution is desired.

* yout — the computed solution vector.

* tret — the time corresponding to yout (output).

* itask — a flag indicating the job of the solver for the next user step.

The ARK_NORMAL option causes the solver to take internal steps until it has just overtaken a user-
specified output time, fout, in the direction of integration, i.e. ¢,,_1 < tout < t,, for forward integration,
or t, < tout < t,_; for backward integration. It will then compute an approximation to the solution
y(tout) by interpolation (using one of the dense output routines described in §2.2).

The ARK_ONE_STEP option tells the solver to only take a single internal step, y,—1 — ¥n, and return
the solution at that point, ,,, in the vector yout.

Return value:

e ARK_SUCCESS if successful.

e ARK_ROOT _RETURN if ERKStepEvolve () succeeded, and found one or more roots. If the number
of root functions, nrtfn, is greater than 1, call ERKStepGetRootInfo() to see which g; were found to
have a root at (*tret).

* ARK_TSTOP_RETURN if ERKStepEvolve () succeeded and returned at zstop.
* ARK_MEM_NULL if the arkode_mem argument was NULL.
e ARK_ NO_MALLOC if arkode_mem was not allocated.

e ARK_ILL_INPUT if one of the inputs to ERKStepEvolve() is illegal, or some other input to the
solver was either illegal or missing. Details will be provided in the error message. Typical causes of
this failure:

(a) A component of the error weight vector became zero during internal time-stepping.
(b) A root of one of the root functions was found both at a point ¢ and also very near ¢.
(c) The initial condition violates the inequality constraints.

* ARK_TOO_MUCH_WORK if the solver took mxstep internal steps but could not reach fout. The
default value for mxstep is MXSTEP_DEFAULT = 500.

* ARK_TOO_MUCH_ACC if the solver could not satisfy the accuracy demanded by the user for some
internal step.

276

Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

* ARK_ERR_FAILURE if error test failures occurred either too many times (ark_maxnef) during one
internal time step or occurred with |h| = hin.

* ARK_VECTOROP_ERR a vector operation error occurred.

Notes:
The input vector yout can use the same memory as the vector y0 of initial conditions that was passed to
ERKStepCreate().

In ARK_ONE_STEP mode, tout is used only on the first call, and only to get the direction and a rough scale
of the independent variable.

All failure return values are negative and so testing the return argument for negative values will trap all
ERKStepEvolve () failures.

Since interpolation may reduce the accuracy in the reported solution, if full method accuracy is desired the
user should issue a call to ERKStepSetStopTime () before the call to ERKStepEvolve () to specify a fixed
stop time to end the time step and return to the user. Upon return from ERKStepEvolve (), a copy of the
internal solution y,, will be returned in the vector yout. Once the integrator returns at a fsfop time, any future
testing for zstop is disabled (and can be re-enabled only though a new call to ERKStepSetStopTime()).

On any error return in which one or more internal steps were taken by ERKStepEvolve (), the returned
values of tret and yout correspond to the farthest point reached in the integration. On all other error returns,
tret and yout are left unchanged from those provided to the routine.

Deprecated since version 6.1.0: Use ARKodeEvolve () instead.

5.8.1.5 Optional input functions

Optional inputs for ERKStep

int ERKStepSetDefaults (void *arkode_mem)
Resets all optional input parameters to ERKStep’s original default values.

Arguments:

* arkode_mem — pointer to the ERKStep memory block.
Return value:

* ARK_SUCCESS if successful

* ARK_MEM_NULL if the ERKStep memory is NULL

e ARK_ILL_INPUT if an argument had an illegal value

Notes:
Does not change problem-defining function pointer f or the user_data pointer.

Also leaves alone any data structures or options related to root-finding (those can be reset using ERKStep-
RootInit()).

Deprecated since version 6.1.0: Use ARKodeSetDefaults() instead.

int ERKStepSetInterpolantType (void *arkode_mem, int itype)
Deprecated since version 6.1.0: This function is now a wrapper to ARKodeSetInterpolantType(), see the
documentation for that function instead.

int ERKStepSetInterpolantDegree (void *arkode_mem, int degree)

Specifies the degree of the polynomial interpolant used for dense output (i.e. interpolation of solution output
values and implicit method predictors).

5.8. Using the ERKStep time-stepping module 277



User Documentation for ARKODE, v6.2.1

Arguments:
* arkode_mem — pointer to the ERKStep memory block.
* degree — requested polynomial degree.
Return value:
e ARK_SUCCESS if successful
* ARK_MEM_NULL if the ERKStep memory or interpolation module are NULL
e ARK INTERP_FAIL if this is called after ERKStepEvolve ()
* ARK_ILL_INPUT if an argument had an illegal value or the interpolation module has already been
initialized
Notes:
Allowed values are between 0 and 5.

This routine should be called after ERKStepCreate () and before ERKStepEvolve (). After the first call to
ERKStepEvolve () the interpolation degree may not be changed without first calling ERKStepReInit ().

If a user calls both this routine and ERKStepSetInterpolantType (), then ERKStepSetInterpolant-
Type () must be called first.

Since the accuracy of any polynomial interpolant is limited by the accuracy of the time-step solutions on
which it is based, the actual polynomial degree that is used by ERKStep will be the minimum of ¢ — 1 and
the input degree, for ¢ > 1 where ¢ is the order of accuracy for the time integration method.

Changed in version 5.5.1: When ¢ = 1, a linear interpolant is the default to ensure values obtained by the
integrator are returned at the ends of the time interval.

Deprecated since version 6.1.0: Use ARKodeSetInterpolantDegree () instead.

int ERKStepSetDenseOrder (void *arkode_mem, int dord)
Deprecated since version 5.2.0: Use ARKodeSetInterpolantDegree () instead.

int ERKStepSetDiagnostics (void *arkode_mem, FILE *diagfp)

Specifies the file pointer for a diagnostics file where all ERKStep step adaptivity and solver information is written.
Arguments:

* arkode_mem — pointer to the ERKStep memory block.

* diagfp — pointer to the diagnostics output file.
Return value:

* ARK_SUCCESS if successful

* ARK_MEM_NULL if the ERKStep memory is NULL

* ARK_ILL_INPUT if an argument had an illegal value

Notes:
This parameter can be stdout or stderr, although the suggested approach is to specify a pointer to a
unique file opened by the user and returned by fopen. If not called, or if called with a NULL file pointer,
all diagnostics output is disabled.

When run in parallel, only one process should set a non-NULL value for this pointer, since statistics from
all processes would be identical.

Deprecated since version 5.2.0: Use SUNLogger_SetInfoFilename () instead.

278 Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

int ERKStepSetFixedStep (void *arkode_mem, sunrealtype hfixed)

Disabled time step adaptivity within ERKStep, and specifies the fixed time step size to use for the following
internal step(s).

Arguments:
* arkode_mem — pointer to the ERKStep memory block.
* hfixed — value of the fixed step size to use.
Return value:
* ARK_SUCCESS if successful
* ARK_MEM_NULL if the ERKStep memory is NULL
e ARK_ILL_INPUT if an argument had an illegal value

Notes:
Pass 0.0 to return ERKStep to the default (adaptive-step) mode.

Use of this function is not generally recommended, since we it gives no assurance of the validity of the
computed solutions. It is primarily provided for code-to-code verification testing purposes.

When using ERKStepSetFixedStep(), any values provided to the functions ERKStepSetInit-
Step(), ERKStepSetAdaptivityFn(), ERKStepSetMaxErrTestFails(), ERKStepSetAdaptiv-
ityMethod(), ERKStepSetCFLFraction(), ERKStepSetErrorBias(), ERKStepSetFixedStep-
Bounds (), ERKStepSetMaxEFailGrowth(), ERKStepSetMaxFirstGrowth(), ERKStepSetMax-
Growth(), ERKStepSetMinReduction(), ERKStepSetSafetyFactor(), ERKStepSetSmallNumE-
Fails(), ERKStepSetStabilityFn(), and ERKStepSetAdaptController() will be ignored, since
temporal adaptivity is disabled.

If both ERKStepSetFixedStep () and ERKStepSetStopTime () are used, then the fixed step size will be
used for all steps until the final step preceding the provided stop time (which may be shorter). To resume
use of the previous fixed step size, another call to ERKStepSetFixedStep () must be made prior to calling
ERKStepEvolve () to resume integration.

It is not recommended that ERKStepSetFixedStep () be used in concert with ERKStepSetMaxStep ()
or ERKStepSetMinStep (), since at best those latter two routines will provide no useful information to the
solver, and at worst they may interfere with the desired fixed step size.

Deprecated since version 6.1.0: Use ARKodeSetFixedStep () instead.

int ERKStepSetInitStep (void *arkode_mem, sunrealtype hin)

Specifies the initial time step size ERKStep should use after initialization, re-initialization, or resetting.
Arguments:

* arkode_mem — pointer to the ERKStep memory block.

* hin — value of the initial step to be attempted (# 0).
Return value:

* ARK_SUCCESS if successful

* ARK_MEM_NULL if the ERKStep memory is NULL

e ARK_ILL_INPUT if an argument had an illegal value

Notes:
Pass 0.0 to use the default value.

5.8. Using the ERKStep time-stepping module 279



User Documentation for ARKODE, v6.2.1

2
4l

By default, ERKStep estimates the initial step size to be h = , where g is an estimate of the second
derivative of the solution at ¢g.
This routine will also reset the step size and error history.

Deprecated since version 6.1.0: Use ARKodeSetInitStep() instead.

int ERKStepSetMaxHnilWarns (void *arkode_mem, int mxhnil)

Specifies the maximum number of messages issued by the solver to warn that ¢t + h = ¢ on the next internal step,
before ERKStep will instead return with an error.

Arguments:

* arkode_mem — pointer to the ERKStep memory block.

* mxhnil — maximum allowed number of warning messages (> 0).
Return value:

e ARK_SUCCESS if successful

* ARK_MEM_NULL if the ERKStep memory is NULL

e ARK_ILL_INPUT if an argument had an illegal value

Notes:
The default value is 10; set mxhnil to zero to specify this default.

A negative value indicates that no warning messages should be issued.
Deprecated since version 6.1.0: Use ARKodeSetMaxHnillWarns () instead.

int ERKStepSetMaxNumSteps (void *arkode_mem, long int mxsteps)

Specifies the maximum number of steps to be taken by the solver in its attempt to reach the next output time,
before ERKStep will return with an error.

Arguments:
* arkode_mem — pointer to the ERKStep memory block.
* mxsteps — maximum allowed number of internal steps.
Return value:
* ARK_SUCCESS if successful
* ARK_MEM_NULL if the ERKStep memory is NULL
e ARK_ILL_INPUT if an argument had an illegal value

Notes:
Passing mxsteps = 0 results in ERKStep using the default value (500).

Passing mxsteps < 0 disables the test (not recommended).
Deprecated since version 6.1.0: Use ARKodeSetMaxNumSteps () instead.

int ERKStepSetMaxStep (void *arkode_mem, sunrealtype hmax)
Specifies the upper bound on the magnitude of the time step size.

Arguments:
* arkode_mem — pointer to the ERKStep memory block.
* hmax — maximum absolute value of the time step size (> 0).

Return value:

280 Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

e ARK SUCCESS if successful
* ARK_MEM_NULL if the ERKStep memory is NULL
* ARK_ILL_INPUT if an argument had an illegal value

Notes:
Pass himax < 0.0 to set the default value of co.

Deprecated since version 6.1.0: Use ARKodeSetMaxStep () instead.

int ERKStepSetMinStep (void *arkode_mem, sunrealtype hmin)
Specifies the lower bound on the magnitude of the time step size.

Arguments:

* arkode_mem — pointer to the ERKStep memory block.

* hmin — minimum absolute value of the time step size (> 0).
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ERKStep memory is NULL

e ARK_ILL_INPUT if an argument had an illegal value

Notes:
Pass hmin < 0.0 to set the default value of 0.

Deprecated since version 6.1.0: Use ARKodeSetMinStep () instead.

int ERKStepSetStopTime (void *arkode_mem, sunrealtype tstop)

Specifies the value of the independent variable ¢ past which the solution is not to proceed.
Arguments:

* arkode_mem — pointer to the ERKStep memory block.

* tstop — stopping time for the integrator.
Return value:

* ARK_SUCCESS if successful

* ARK_MEM_NULL if the ERKStep memory is NULL

* ARK_ILL_INPUT if an argument had an illegal value

Notes:
The default is that no stop time is imposed.

Once the integrator returns at a stop time, any future testing for tstop is disabled (and can be re-enabled
only though a new call to ERKStepSetStopTime()).

A stop time not reached before a call to ERKStepReInit () or ERKStepReset () will remain active but
can be disabled by calling ERKStepClearStopTime ().

Deprecated since version 6.1.0: Use ARKodeSetStopTime () instead.

int ERKStepSetInterpolateStopTime (void *arkode_mem, sunbooleantype interp)

Specifies that the output solution should be interpolated when the current ¢ equals the specified tstop (instead
of merely copying the internal solution y,,).

Arguments:

* arkode_mem — pointer to the ERKStep memory block.

5.8. Using the ERKStep time-stepping module 281



User Documentation for ARKODE, v6.2.1

* interp — flag indicating to use interpolation (1) or copy (0).
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ERKStep memory is NULL
Added in version 5.6.0.
Deprecated since version 6.1.0: Use ARKodeSetInterpolateStopTime () instead.

int ERKStepClearStopTime (void *arkode_mem)
Disables the stop time set with ERKStepSetStopTime ().

Arguments:

* arkode_mem — pointer to the ERKStep memory block.
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ERKStep memory is NULL

Notes:
The stop time can be re-enabled though a new call to ERKStepSetStopTime ().

Added in version 5.5.1.
Deprecated since version 6.1.0: Use ARKodeClearStopTime () instead.

int ERKStepSetUserData(void *arkode_mem, void *user_data)
Specifies the user data block user_data and attaches it to the main ERKStep memory block.

Arguments:
* arkode_mem — pointer to the ERKStep memory block.
* user_data — pointer to the user data.
Return value:
e ARK_SUCCESS if successful
* ARK_MEM_NULL if the ERKStep memory is NULL
e ARK_ILL_INPUT if an argument had an illegal value

Notes:
If specified, the pointer to user_data is passed to all user-supplied functions for which it is an argument;
otherwise NULL is passed.

Deprecated since version 6.1.0: Use ARKodeSetUserData () instead.

int ERKStepSetMaxErrTestFails (void *arkode_mem, int maxnef)

Specifies the maximum number of error test failures permitted in attempting one step, before returning with an
error.

Arguments:

* arkode_mem — pointer to the ERKStep memory block.

* maxnef — maximum allowed number of error test failures (> 0).
Return value:

e ARK SUCCESS if successful

282 Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

* ARK_MEM_NULL if the ERKStep memory is NULL
e ARK_ILL_INPUT if an argument had an illegal value

Notes:
The default value is 7; set maxnef < 0 to specify this default.

Deprecated since version 6.1.0: Use ARKodeSetMaxErrTestFails() instead.

int ERKStepSetConstraints(void *arkode_mem, N_Vector constraints)

Specifies a vector defining inequality constraints for each component of the solution vector y.
Arguments:
* arkode_mem — pointer to the ERKStep memory block.

* constraints — vector of constraint flags. Each component specifies the type of solution constraint:

0.0 = no constraint is imposed on y;,
1.0 = vy 20,
constraints[i] = ¢ —-1.0 = y; <0,
20 = y; >0,
-20 = y; <O.

Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ERKStep memory is NULL
* ARK_ILL_INPUT if the constraints vector contains illegal values

Notes:
The presence of a non-NULL constraints vector that is not 0.0 in all components will cause constraint check-
ing to be performed. However, a call with 0.0 in all components of constraints will result in an illegal
input return. A NULL constraints vector will disable constraint checking.

After a call to ERKStepResize() inequality constraint checking will be disabled and a call to ERK-
StepSetConstraints() is required to re-enable constraint checking.

Since constraint-handling is performed through cutting time steps that would violate the constraints, it is
possible that this feature will cause some problems to fail due to an inability to enforce constraints even at
the minimum time step size. Additionally, the features ERKStepSetConstraints() and ERKStepSet-
FixedStep () are incompatible, and should not be used simultaneously.

Deprecated since version 6.1.0: Use ARKodeSetConstraints () instead.

int ERKStepSetMaxNumConstrFails (void *arkode_mem, int maxfails)

Specifies the maximum number of constraint failures in a step before ERKStep will return with an error.
Arguments:

* arkode_mem — pointer to the ERKStep memory block.

¢ maxfails — maximum allowed number of constrain failures.
Return value:

* ARK_SUCCESS if successful

* ARK_MEM_NULL if the ERKStep memory is NULL

Notes:
Passing maxfails <= 0 results in ERKStep using the default value (10).

5.8. Using the ERKStep time-stepping module 283



User Documentation for ARKODE, v6.2.1

Deprecated since version 6.1.0: Use ARKodeSetMaxNumConstrFails() instead.

Optional inputs for IVP method selection

Table 5.3: Optional inputs for IVP method selection

Optional input Function name Default
Set integrator method order ERKStepSetOrder () 4
Set explicit RK table ERKStepSetTable() internal

Set explicit RK table via its number ERKStepSetTableNum() internal
Set explicit RK table via its name ERKStepSetTableName() internal

int ERKStepSetOrder (void *arkode_mem, int ord)
Specifies the order of accuracy for the ERK integration method.
Arguments:
* arkode_mem — pointer to the ERKStep memory block.
* ord —requested order of accuracy.
Return value:
e ARK_SUCCESS if successful
* ARK_MEM_NULL if the ERKStep memory is NULL
e ARK_ILL_INPUT if an argument had an illegal value

Notes:
The allowed values are 2 < ord < 8. Any illegal input will result in the default value of 4.

Since ord affects the memory requirements for the internal ERKStep memory block, it cannot be changed
after the first call to ERKStepEvolve (), unless ERKStepReInit () is called.

Deprecated since version 6.1.0: Use ARKodeSetOrder () instead.

int ERKStepSetTable(void *arkode_mem, ARKodeButcherTable B)
Specifies a customized Butcher table for the ERK method.

Arguments:

* arkode_mem — pointer to the ERKStep memory block.

* B — the Butcher table for the explicit RK method.
Return value:

* ARK_SUCCESS if successful

* ARK_MEM_NULL if the ERKStep memory is NULL

e ARK_ILL_INPUT if an argument had an illegal value
Notes:

For a description of the ARKodeButcherTable type and related functions for creating Butcher tables,
see §6.

No error checking is performed to ensure that either the method order p or the embedding order g
specified in the Butcher table structure correctly describe the coefficients in the Butcher table.

284 Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

Error checking is performed to ensure that the Butcher table is strictly lower-triangular (i.e. that it
specifies an ERK method).

If the Butcher table does not contain an embedding, the user must call ERKStepSetFixedStep() to

enable fixed-step mode and set the desired time step size.

Warning:
This should not be used with ARKodeSetOrder ().

int ERKStepSetTableNum(void *arkode_mem, ARKODE_ERKTubleID etable)
Indicates to use a specific built-in Butcher table for the ERK method.

Arguments:
* arkode_mem — pointer to the ERKStep memory block.
* etable — index of the Butcher table.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ERKStep memory is NULL
e ARK_ILL_INPUT if an argument had an illegal value

Notes:
etable should match an existing explicit method from §18.1. Error-checking is performed to ensure that the
table exists, and is not implicit.

Warning:
This should not be used with ARKodeSetOrder ().

int ERKStepSetTableName (void *arkode_mem, const char *etable)
Indicates to use a specific built-in Butcher table for the ERK method.

Arguments:
* arkode_mem — pointer to the ERKStep memory block.
* etable — name of the Butcher table.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ERKStep memory is NULL
e ARK_ILL_INPUT if an argument had an illegal value

Notes:
etable should match an existing explicit method from §18.1. Error-checking is performed to ensure that the
table exists, and is not implicit. This function is case sensitive.

Warning:
This should not be used with ARKodeSetOrder ().

5.8. Using the ERKStep time-stepping module 285



User Documentation for ARKODE, v6.2.1

Optional inputs for time step adaptivity

The mathematical explanation of ARKODE'’s time step adaptivity algorithm, including how each of the parameters
below is used within the code, is provided in §2.11.

int ERKStepSetAdaptController (void *arkode_mem, SUNAdaptController C)
Sets a user-supplied time-step controller object.

Arguments:
* arkode_mem — pointer to the ERKStep memory block.

e C — user-supplied time adaptivity controller. If NULL then the PID controller will be created (see
§12.2).

Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ERKStep memory is NULL
e ARK_MEM_FAIL if C was NULL and the PID controller could not be allocated.

Notes:
When C is NULL, the PID controller that is created is not the same as the ERKStep default (PI). To reset
ERKStep to its default behavior after a non-default controller has been used, users should either specifically
create the PI controller C and attach it here, or call ERKStepSetDefaults().

Added in version 5.7.0.
Deprecated since version 6.1.0: Use ARKodeSetAdaptController() instead.
int ERKStepSetAdaptivityFn(void *arkode mem, ARKAdaptFn hfun, void *h_data)

Sets a user-supplied time-step adaptivity function.
Arguments:

* arkode_mem — pointer to the ERKStep memory block.

* hfun — name of user-supplied adaptivity function.

* h_data — pointer to user data passed to hfun every time it is called.
Return value:

e ARK_SUCCESS if successful

* ARK_MEM_NULL if the ERKStep memory is NULL

e ARK_ILL_INPUT if an argument had an illegal value

Notes:
This function should focus on accuracy-based time step estimation; for stability based time steps the func-
tion ERKStepSetStabilityFn() should be used instead.

Deprecated since version 5.7.0: Use the SUNAdaptController infrastructure instead (see §12.1).

int ERKStepSetAdaptivityMethod (void *arkode_mem, int imethod, int idefault, int pq, sunrealtype
*adapt_params)

Specifies the method (and associated parameters) used for time step adaptivity.
Arguments:

* arkode_mem — pointer to the ERKStep memory block.

286 Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

* imethod — accuracy-based adaptivity method choice (0 < imethod < 5): 0is PID, 1is PI, 2is I, 3 is
explicit Gustafsson, 4 is implicit Gustafsson, and 5 is the ImEx Gustafsson.

* idefault — flag denoting whether to use default adaptivity parameters (1), or that they will be supplied
in the adapt_params argument (0).

* pq —flag denoting whether to use the embedding order of accuracy p (0), the method order of accuracy
q (1), or the minimum of the two (any input not equal to O or 1) within the adaptivity algorithm. p is
the default.

* adapt_params[0] — k; parameter within accuracy-based adaptivity algorithms.

* adapt_params[1] — ko parameter within accuracy-based adaptivity algorithms.

* adapt_params[2] — ks parameter within accuracy-based adaptivity algorithms.
Return value:

e ARK _SUCCESS if successful

* ARK_MEM_NULL if the ERKStep memory is NULL

e ARK_ILL_INPUT if an argument had an illegal value

Notes:
If custom parameters are supplied, they will be checked for validity against published stability intervals. If
other parameter values are desired, it is recommended to instead provide a custom function through a call
to ERKStepSetAdaptivityFn().

Changed in version 5.7.0: Prior to version 5.7.0, any nonzero value for pg would result in use of the em-
bedding order of accuracy.

Deprecated since version 5.7.0: Use the SUNAdaptController infrastructure instead (see §12.1).

int ERKStepSetAdaptivityAdjustment (void *arkode_mem, int adjust)

Called by a user to adjust the method order supplied to the temporal adaptivity controller. For example, if the
user expects order reduction due to problem stiffness, they may request that the controller assume a reduced order
of accuracy for the method by specifying a value adjust < 0.

Arguments:
* arkode_mem — pointer to the ERKStep memory block.
* adjust — adjustment factor (default is -1).
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ERKStep memory is NULL
e ARK_ILL_INPUT if an argument had an illegal value

Notes:
This should be called prior to calling ERKStepEvolve (), and can only be reset following a call to ERK-
StepReInit().

Added in version 5.7.0.
Deprecated since version 6.1.0: Use ARKodeSetAdaptivityAdjustment () instead.

int ERKStepSetCFLFraction(void *arkode_mem, sunrealtype cfl_frac)

Specifies the fraction of the estimated explicitly stable step to use.

Arguments:

5.8. Using the ERKStep time-stepping module 287



User Documentation for ARKODE, v6.2.1

* arkode_mem — pointer to the ERKStep memory block.

* ¢fl_frac — maximum allowed fraction of explicitly stable step (default is 0.5).
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ERKStep memory is NULL

* ARK_ILL_INPUT if an argument had an illegal value

Notes:
Any non-positive parameter will imply a reset to the default value.

Deprecated since version 6.1.0: Use ARKodeSetCFLFraction() instead.

int ERKStepSetErrorBias (void *arkode_mem, sunrealtype bias)
Specifies the bias to be applied to the error estimates within accuracy-based adaptivity strategies.

Arguments:

* arkode_mem — pointer to the ERKStep memory block.

* bias — bias applied to error in accuracy-based time step estimation (default is 1.5).
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ERKStep memory is NULL

* ARK_ILL_INPUT if an argument had an illegal value

Notes:
Any value below 1.0 will imply a reset to the default value.

If both this and one of ERKStepSetAdaptivityMethod() or ERKStepSetAdaptController() will be
called, then this routine must be called second.

Deprecated since version 5.7.0: Use the SUNAdaptController infrastructure instead (see §12.1).

int ERKStepSetFixedStepBounds (void *arkode_mem, sunrealtype 1b, sunrealtype ub)

Specifies the step growth interval in which the step size will remain unchanged.
Arguments:

* arkode_mem — pointer to the ERKStep memory block.

¢ [b — lower bound on window to leave step size fixed (default is 1.0).

* ub — upper bound on window to leave step size fixed (default is 1.5).
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ERKStep memory is NULL

* ARK_ILL_INPUT if an argument had an illegal value

Notes:
Any interval not containing 1.0 will imply a reset to the default values.

Deprecated since version 6.1.0: Use ARKodeSetFixedStepBounds () instead.

288 Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

int ERKStepSetMaxEFailGrowth (void *arkode_mem, sunrealtype etamxf)

Specifies the maximum step size growth factor upon multiple successive accuracy-based error failures in the
solver.

Arguments:

* arkode_mem — pointer to the ERKStep memory block.

* etamxf — time step reduction factor on multiple error fails (default is 0.3).
Return value:

* ARK_SUCCESS if successful

* ARK_MEM_NULL if the ERKStep memory is NULL

e ARK_ILL_INPUT if an argument had an illegal value

Notes:
Any value outside the interval (0, 1] will imply a reset to the default value.

Deprecated since version 6.1.0: Use ARKodeSetMaxEFailGrowth() instead.

int ERKStepSetMaxFirstGrowth (void *arkode_mem, sunrealtype etamx1)

Specifies the maximum allowed growth factor in step size following the very first integration step.
Arguments:

* arkode_mem — pointer to the ERKStep memory block.

* etamx] — maximum allowed growth factor after the first time step (default is 10000.0).
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ERKStep memory is NULL

* ARK_ILL_INPUT if an argument had an illegal value

Notes:
Any value < 1.0 will imply a reset to the default value.

Deprecated since version 6.1.0: Use ARKodeSetMaxFirstGrowth() instead.

int ERKStepSetMaxGrowth (void *arkode_mem, sunrealtype mx_growth)
Specifies the maximum allowed growth factor in step size between consecutive steps in the integration process.

Arguments:

* arkode_mem — pointer to the ERKStep memory block.

* mx_growth — maximum allowed growth factor between consecutive time steps (default is 20.0).
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ERKStep memory is NULL

e ARK_ILL_INPUT if an argument had an illegal value

Notes:
Any value < 1.0 will imply a reset to the default value.

Deprecated since version 6.1.0: Use ARKodeSetMaxGrowth() instead.

5.8. Using the ERKStep time-stepping module 289



User Documentation for ARKODE, v6.2.1

int ERKStepSetMinReduction (void *arkode_mem, sunrealtype eta_min)

Specifies the minimum allowed reduction factor in step size between step attempts, resulting from a temporal
error failure in the integration process.

Arguments:

* arkode_mem — pointer to the ERKStep memory block.

* eta_min — minimum allowed reduction factor time step after an error test failure (default is 0.1).
Return value:

* ARK_SUCCESS if successful

* ARK_MEM_NULL if the ERKStep memory is NULL

e ARK_ILL_INPUT if an argument had an illegal value

Notes:
Any value > 1.0 or < 0.0 will imply a reset to the default value.

Deprecated since version 6.1.0: Use ARKodeSetMinReduction() instead.

int ERKStepSetSafetyFactor (void *arkode_mem, sunrealtype safety)

Specifies the safety factor to be applied to the accuracy-based estimated step.
Arguments:

* arkode_mem — pointer to the ERKStep memory block.

* safety — safety factor applied to accuracy-based time step (default is 0.96).
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ERKStep memory is NULL

* ARK_ILL_INPUT if an argument had an illegal value

Notes:
Any non-positive parameter will imply a reset to the default value.

Deprecated since version 6.1.0: Use ARKodeSetSafetyFactor () instead.

int ERKStepSetSmallNumEFails (void *arkode_mem, int small_nef)

Specifies the threshold for “multiple” successive error failures before the efamxf parameter from ERKStepSet -
MaxEFailGrowth() is applied.

Arguments:

* arkode_mem — pointer to the ERKStep memory block.

» small_nef —bound to determine “multiple” for etamxf (default is 2).
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ERKStep memory is NULL

* ARK_ILL_INPUT if an argument had an illegal value

Notes:
Any non-positive parameter will imply a reset to the default value.

Deprecated since version 6.1.0: Use ARKodeSetSmallNumEFails () instead.

290

Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

int ERKStepSetStabilityFn(void *arkode_mem, ARKExpStabFn EStab, void *estab_data)

Sets the problem-dependent function to estimate a stable time step size for the explicit portion of the ODE system.
Arguments:

* arkode_mem — pointer to the ERKStep memory block.

» EStab — name of user-supplied stability function.

* estab_data — pointer to user data passed to EStab every time it is called.
Return value:

* ARK_SUCCESS if successful

* ARK_MEM_NULL if the ERKStep memory is NULL

* ARK_ILL_INPUT if an argument had an illegal value

Notes:
This function should return an estimate of the absolute value of the maximum stable time step for the the

ODE system. It is not required, since accuracy-based adaptivity may be sufficient for retaining stability,
but this can be quite useful for problems where the right-hand side function f (¢, y) contains stiff terms.

Deprecated since version 6.1.0: Use ARKodeSetStabilityFn() instead.

Rootfinding optional input functions

int ERKStepSetRootDirection(void *arkode_mem, int *rootdir)

Specifies the direction of zero-crossings to be located and returned.
Arguments:
* arkode_mem — pointer to the ERKStep memory block.

* rootdir — state array of length nrtfn, the number of root functions g; (the value of nrtfn was supplied
in the call to ERKStepRootInit()). If rootdir[i] == O then crossing in either direction for g;
should be reported. A value of +1 or -1 indicates that the solver should report only zero-crossings
where g; is increasing or decreasing, respectively.

Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ERKStep memory is NULL
e ARK_ILL_INPUT if an argument had an illegal value

Notes:
The default behavior is to monitor for both zero-crossing directions.

Deprecated since version 6.1.0: Use ARKodeSetRootDirection() instead.

int ERKStepSetNoInactiveRootWarn(void *arkode_mem)
Disables issuing a warning if some root function appears to be identically zero at the beginning of the integration.

Arguments:

* arkode_mem — pointer to the ERKStep memory block.
Return value:

e ARK_SUCCESS if successful

* ARK_MEM_NULL if the ERKStep memory is NULL

5.8. Using the ERKStep time-stepping module 291



User Documentation for ARKODE, v6.2.1

Notes:
ERKStep will not report the initial conditions as a possible zero-crossing (assuming that one or more com-
ponents g; are zero at the initial time). However, if it appears that some g; is identically zero at the initial
time (i.e., g; is zero at the initial time and after the first step), ERKStep will issue a warning which can be
disabled with this optional input function.

Deprecated since version 6.1.0: Use ARKodeSetNoInactiveRootlWarn() instead.

5.8.1.6 Interpolated output function

int ERKStepGetDky (void *arkode_mem, sunrealtype t, int k, N_Vector dky)

Computes the k-th derivative of the function y at the time ¢, i.e., y(k) (t), for values of the independent variable
satisfying ¢, — h,, < t < t,, with ¢,, as current internal time reached, and h,, is the last internal step size
successfully used by the solver. This routine uses an interpolating polynomial of degree min(degree, 5), where
degree is the argument provided to ERKStepSetInterpolantDegree (). The user may request k in the range
{0,..., min(degree, kmax)} where kmax depends on the choice of interpolation module. For Hermite interpolants
kmax = 5 and for Lagrange interpolants kmax = 3.

Arguments:
* arkode_mem — pointer to the ERKStep memory block.
* t —the value of the independent variable at which the derivative is to be evaluated.
* k — the derivative order requested.
* dky — output vector (must be allocated by the user).
Return value:
e ARK_SUCCESS if successful
* ARK_BAD_K if k is not in the range {O0,..., min(degree, kmax)}.
* ARK_BAD_T if t is not in the interval [t,, — h,,, t,]
* ARK_BAD_DKY if the dky vector was NULL
* ARK_MEM_NULL if the ERKStep memory is NULL

Notes:
It is only legal to call this function after a successful return from ERKStepEvolve().

A user may access the values t,, and h,, via the functions ERKStepGetCurrentTime () and ERKStepGet-
LastStep(), respectively.

Deprecated since version 6.1.0: Use ARKodeGetDky () instead.

5.8.1.7 Optional output functions

Main solver optional output functions

int ERKStepGetWorkSpace (void *arkode_mem, long int *lenrw, long int *leniw)

Returns the ERKStep real and integer workspace sizes.
Arguments:
* arkode_mem — pointer to the ERKStep memory block.

* lenrw — the number of sunrealtype values in the ERKStep workspace.

292 Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

* leniw — the number of integer values in the ERKStep workspace.
Return value:

e ARK SUCCESS if successful

e ARK_MEM_NULL if the ERKStep memory was NULL
Deprecated since version 6.1.0: Use ARKodeGetlorkSpace () instead.

int ERKStepGetNumSteps (void *arkode_mem, long int *nsteps)

Returns the cumulative number of internal steps taken by the solver (so far).

Arguments:

* arkode_mem — pointer to the ERKStep memory block.

* nsteps — number of steps taken in the solver.
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ERKStep memory was NULL
Deprecated since version 6.1.0: Use ARKodeGetNumSteps () instead.

int ERKStepGetActualInitStep (void *arkode_mem, sunrealtype *hinused)
Returns the value of the integration step size used on the first step.

Arguments:
* arkode_mem — pointer to the ERKStep memory block.
* hinused — actual value of initial step size.
Return value:
e ARK SUCCESS if successful
e ARK_MEM_NULL if the ERKStep memory was NULL
Notes:

Even if the value of the initial integration step was specified by the user through a call to ERKStepSe-
tInitStep(), this value may have been changed by ERKStep to ensure that the step size fell within the

prescribed bounds (Ayin < ho < Apmaq), Or to satisfy the local error test condition.

Deprecated since version 6.1.0: Use ARKodeGetActualInitStep() instead.

int ERKStepGetLastStep(void *arkode_mem, sunrealtype *hlast)

Returns the integration step size taken on the last successful internal step.
Arguments:

* arkode_mem — pointer to the ERKStep memory block.

* hlast — step size taken on the last internal step.
Return value:

* ARK_SUCCESS if successful

* ARK_MEM_NULL if the ERKStep memory was NULL

Deprecated since version 6.1.0: Use ARKodeGetLastStep () instead.

5.8. Using the ERKStep time-stepping module

293



User Documentation for ARKODE, v6.2.1

int ERKStepGetCurrentStep (void *arkode_mem, sunrealtype *hcur)
Returns the integration step size to be attempted on the next internal step.

Arguments:

* arkode_mem — pointer to the ERKStep memory block.

* hcur — step size to be attempted on the next internal step.
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ERKStep memory was NULL
Deprecated since version 6.1.0: Use ARKodeGetCurrentStep() instead.

int ERKStepGetCurrentTime (void *arkode_mem, sunrealtype *tcur)
Returns the current internal time reached by the solver.

Arguments:

* arkode_mem — pointer to the ERKStep memory block.

* tcur — current internal time reached.
Return value:

* ARK_SUCCESS if successful

e ARK_MEM_NULL if the ERKStep memory was NULL
Deprecated since version 6.1.0: Use ARKodeGetCurrentTime () instead.

int ERKStepGetTolScaleFactor (void *arkode_mem, sunrealtype *tolsfac)

Returns a suggested factor by which the user’s tolerances should be scaled when too much accuracy has been
requested for some internal step.

Arguments:

* arkode_mem — pointer to the ERKStep memory block.

* tolsfac — suggested scaling factor for user-supplied tolerances.
Return value:

e ARK_SUCCESS if successful

* ARK_MEM_NULL if the ERKStep memory was NULL
Deprecated since version 6.1.0: Use ARKodeGetTolScaleFactor () instead.

int ERKStepGetErrWeights (void *arkode_mem, N_Vector eweight)
Returns the current error weight vector.

Arguments:
* arkode_mem — pointer to the ERKStep memory block.
* eweight — solution error weights at the current time.
Return value:
e ARK _SUCCESS if successful
* ARK_MEM_NULL if the ERKStep memory was NULL

Notes:
The user must allocate space for eweight, that will be filled in by this function.

294 Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

Deprecated since version 6.1.0: Use ARKodeGetErrileights () instead.

int ERKStepGetStepStats(void *arkode_mem, long int *nsteps, sunrealtype *hinused, sunrealtype *hlast,
sunrealtype *hcur, sunrealtype *tcur)

Returns many of the most useful optional outputs in a single call.
Arguments:

* arkode_mem — pointer to the ERKStep memory block.

* nsteps — number of steps taken in the solver.

* hinused — actual value of initial step size.

* hlast — step size taken on the last internal step.

* hcur — step size to be attempted on the next internal step.

* fcur — current internal time reached.
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ERKStep memory was NULL
Deprecated since version 6.1.0: Use ARKodeGetStepStats () instead.

int ERKStepPrintAllStats(void *arkode_mem, FILE *outfile, SUNOutputFormat fmt)
Outputs all of the integrator and other statistics.

Arguments:
* arkode_mem — pointer to the ERKStep memory block.
* outfile — pointer to output file.
e fimt — the output format:
— SUN_OUTPUTFORMAT_TABLE — prints a table of values

— SUN_OUTPUTFORMAT_CSV — prints a comma-separated list of key and value pairs e.g., key1,
valuel,key2,value2,...

Return value:
* ARK_SUCCESS - if the output was successfully.
e CV_MEM_NULL - if the ERKStep memory was NULL.
e CV_ILL_INPUT - if an invalid formatting option was provided.

Note

The Python module tools/suntools provides utilities to read and output the data from a SUNDIALS CSV
output file using the key and value pair format.

Added in version 5.2.0.
Deprecated since version 6.1.0: Use ARKodePrintAllStats () instead.

char *ERKStepGetReturnFlagName (long int flag)
Returns the name of the ERKStep constant corresponding to flag. See ARKODE Constants.

Arguments:

5.8. Using the ERKStep time-stepping module 295



User Documentation for ARKODE, v6.2.1

* flag — a return flag from an ERKStep function.

Return value:
The return value is a string containing the name of the corresponding constant.

Deprecated since version 6.1.0: Use ARKodeGetReturnFIlagName () instead.

int ERKStepGetNumExpSteps (void *arkode_mem, long int *expsteps)

Returns the cumulative number of stability-limited steps taken by the solver (so far).
Arguments:
* arkode_mem — pointer to the ERKStep memory block.
* expsteps — number of stability-limited steps taken in the solver.
Return value:
e ARK_SUCCESS if successful
* ARK_MEM_NULL if the ERKStep memory was NULL
Deprecated since version 6.1.0: Use ARKodeGetNumExpSteps () instead.

int ERKStepGetNumAccSteps (void *arkode_mem, long int *accsteps)

Returns the cumulative number of accuracy-limited steps taken by the solver (so far).
Arguments:
* arkode_mem — pointer to the ERKStep memory block.
* accsteps — number of accuracy-limited steps taken in the solver.
Return value:
e ARK_SUCCESS if successful
* ARK_MEM_NULL if the ERKStep memory was NULL
Deprecated since version 6.1.0: Use ARKodeGetNumAccSteps () instead.

int ERKStepGetNumStepAttempts (void *arkode_mem, long int *step_attempts)

Returns the cumulative number of steps attempted by the solver (so far).
Arguments:
* arkode_mem — pointer to the ERKStep memory block.
* step_attempts — number of steps attempted by solver.
Return value:
e ARK_SUCCESS if successful
* ARK_MEM_NULL if the ERKStep memory was NULL
Deprecated since version 6.1.0: Use ARKodeGetNumStepAttempts () instead.
int ERKStepGetNumRhsEvals (void *arkode_mem, long int *nf_evals)

Returns the number of calls to the user’s right-hand side function, f (so far).
Arguments:

* arkode_mem — pointer to the ERKStep memory block.

* nf_evals — number of calls to the user’s f(t, y) function.

Return value:

296 Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

e ARK SUCCESS if successful
* ARK_MEM_NULL if the ERKStep memory was NULL
Deprecated since version 6.2.0: Use ARKodeGetNumRhsEvals () instead.
int ERKStepGetNumErrTestFails (void *arkode_mem, long int *netfails)

Returns the number of local error test failures that have occurred (so far).
Arguments:
* arkode_mem — pointer to the ERKStep memory block.
* netfails — number of error test failures.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ERKStep memory was NULL
Deprecated since version 6.1.0: Use ARKodeGetNumErrTestFails () instead.

int ERKStepGetCurrentButcherTable (void *arkode_mem, ARKodeButcherTable *B)

Returns the Butcher table currently in use by the solver.
Arguments:
* arkode_mem — pointer to the ERKStep memory block.
* B — pointer to the Butcher table structure.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ERKStep memory was NULL

Notes:
The ARKodeButcherTable data structure is defined as a pointer to the following C structure:

typedef struct ARKodeButcherTableMem {

int q;

int p;

int stages;
sunrealtype **A;
sunrealtype *c;
sunrealtype *b;
sunrealtype *d;

* method order of accuracy

* embedding order of accuracy
* number of stages

* Butcher table coefficients
* canopy node coefficients

* root node coefficients
embedding coefficients

PRI
NN

} *ARKodeButcherTable;

For more details see §6.

int ERKStepGetEstLocalErrors (void *arkode_mem, N_Vecror ele)

Returns the vector of estimated local truncation errors for the current step.
Arguments:

* arkode_mem — pointer to the ERKStep memory block.

* ele — vector of estimated local truncation errors.

Return value:

5.8. Using the ERKStep time-stepping module

297



User Documentation for ARKODE, v6.2.1

e ARK SUCCESS if successful
* ARK_MEM_NULL if the ERKStep memory was NULL
Notes:

The user must allocate space for ele, that will be filled in by this function.

The values returned in ele are valid only after a successful call to ERKStepEvolve() (i.e., it returned a

non-negative value).

The ele vector, together with the eweight vector from ERKStepGetErrifeights (), can be used to deter-
mine how the various components of the system contributed to the estimated local error test. Specifically,
that error test uses the WRMS norm of a vector whose components are the products of the components of
these two vectors. Thus, for example, if there were recent error test failures, the components causing the
failures are those with largest values for the products, denoted loosely as eweight[i]*ele[i].

Deprecated since version 6.1.0: Use ARKodeGetEstLocalErrors () instead.

int ERKStepGetTimestepperStats(void *arkode_mem, long int *expsteps, long int *accsteps, long int
*step_attempts, long int *nf_evals, long int *netfails)

Returns many of the most useful time-stepper statistics in a single call.
Arguments:
* arkode_mem — pointer to the ERKStep memory block.
* expsteps — number of stability-limited steps taken in the solver.
* accsteps — number of accuracy-limited steps taken in the solver.
* step_attempts — number of steps attempted by the solver.
* nf_evals — number of calls to the user’s f(¢,y) function.
* netfails — number of error test failures.
Return value:
e ARK_SUCCESS if successful
* ARK_MEM_NULL if the ERKStep memory was NULL

int ERKStepGetNumConstrFails (void *arkode_mem, long int *nconstrfails)

Returns the cumulative number of constraint test failures (so far).
Arguments:
* arkode_mem — pointer to the ERKStep memory block.
* nconstrfails — number of constraint test failures.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ERKStep memory was NULL
Deprecated since version 6.1.0: Use ARKodeGetNumConstrFails() instead.

int ERKStepGetUserData (void *arkode_mem, void **user_data)
Returns the user data pointer previously set with ERKStepSetUserData().

Arguments:
* arkode_mem — pointer to the ERKStep memory block.

* user_data — memory reference to a user data pointer

298

Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

Return value:

* ARK_SUCCESS if successful

* ARK_MEM_NULL if the ERKStep memory was NULL
Added in version 5.3.0.

Deprecated since version 6.1.0: Use ARKodeGetUserData () instead.

Rootfinding optional output functions

int ERKStepGetRootInfo (void *arkode_mem, int *rootsfound)

Returns an array showing which functions were found to have a root.
Arguments:
* arkode_mem — pointer to the ERKStep memory block.

* rootsfound — array of length nrtfn with the indices of the user functions g; found to have a root (the value
of nrtfn was supplied in the call to ERKStepRootInit()). Fori = 0... nrtfn-1, rootsfound[i] is
nonzero if g; has a root, and 0 if not.

Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ERKStep memory was NULL

Notes:
The user must allocate space for rootsfound prior to calling this function.

For the components of g; for which a root was found, the sign of rootsfound[i] indicates the direction
of zero-crossing. A value of +1 indicates that g; is increasing, while a value of -1 indicates a decreasing g;.

Deprecated since version 6.1.0: Use ARKodeGetRootInfo() instead.

int ERKStepGetNumGEvals (void *arkode_mem, long int *ngevals)

Returns the cumulative number of calls made to the user’s root function g.
Arguments:

¢ arkode_mem — pointer to the ERKStep memory block.

* ngevals — number of calls made to g so far.
Return value:

e ARK SUCCESS if successful

e ARK_MEM_NULL if the ERKStep memory was NULL

Deprecated since version 6.1.0: Use ARKodeGetNumGEvals () instead.

5.8. Using the ERKStep time-stepping module 299



User Documentation for ARKODE, v6.2.1

General usability functions

int ERKStepWriteParameters (void *arkode_mem, FILE *fp)
Outputs all ERKStep solver parameters to the provided file pointer.

Arguments:
* arkode_mem — pointer to the ERKStep memory block.
* fp — pointer to use for printing the solver parameters.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ERKStep memory was NULL

Notes:
The fp argument can be stdout or stderr, or it may point to a specific file created using fopen.

When run in parallel, only one process should set a non-NULL value for this pointer, since parameters for
all processes would be identical.

Deprecated since version 6.1.0: Use ARKodeliriteParameters () instead.
int ERKStepWriteButcher (void *arkode_mem, FILE *fp)
Outputs the current Butcher table to the provided file pointer.
Arguments:
* arkode_mem — pointer to the ERKStep memory block.
* fp — pointer to use for printing the Butcher table.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ERKStep memory was NULL

Notes:
The fp argument can be stdout or stderr, or it may point to a specific file created using fopen.

When run in parallel, only one process should set a non-NULL value for this pointer, since tables for all
processes would be identical.

Deprecated since version 6.1.0: Use ERKStepGetCurrentButcherTable() and ARKodeButcherTable_-
Write() instead.

5.8.1.8 ERKStep re-initialization function

To reinitialize the ERKStep module for the solution of a new problem, where a prior call to ERKStepCreate () has been
made, the user must call the function ERKStepReInit (). The new problem must have the same size as the previous
one. This routine retains the current settings for all ERKstep module options and performs the same input checking and
initializations that are done in ERKStepCreate (), but it performs no memory allocation as it assumes that the existing
internal memory is sufficient for the new problem. A call to this re-initialization routine deletes the solution history
that was stored internally during the previous integration, and deletes any previously-set zstop value specified via a call
to ERKStepSetStopTime (). Following a successful call to ERKStepReInit (), call ERKStepEvolve () again for the
solution of the new problem.

The use of ERKStepReInit () requires that the number of Runge—Kutta stages, denoted by s, be no larger for the new
problem than for the previous problem. This condition is automatically fulfilled if the method order g is left unchanged.

300 Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

One important use of the ERKStepReInit () function is in the treating of jump discontinuities in the RHS function.
Except in cases of fairly small jumps, it is usually more efficient to stop at each point of discontinuity and restart the
integrator with a readjusted ODE model, using a call to this routine. To stop when the location of the discontinuity is
known, simply make that location a value of tout. To stop when the location of the discontinuity is determined by the
solution, use the rootfinding feature. In either case, it is critical that the RHS function not incorporate the discontinuity,
but rather have a smooth extension over the discontinuity, so that the step across it (and subsequent rootfinding, if used)
can be done efficiently. Then use a switch within the RHS function (communicated through user_data) that can be
flipped between the stopping of the integration and the restart, so that the restarted problem uses the new values (which
have jumped). Similar comments apply if there is to be a jump in the dependent variable vector.

int ERKStepReInit (void *arkode_mem, ARKRhsFn f, sunrealtype t0, N_Vector y0)

Provides required problem specifications and re-initializes the ERKStep time-stepper module.
Arguments:
* arkode_mem — pointer to the ERKStep memory block.

* f — the name of the C function (of type ARKRhsFn()) defining the right-hand side function in y =
ft,y).

¢ 10 — the initial value of t.
* y0 — the initial condition vector y(¢o).
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ERKStep memory was NULL
* ARK_MEM_FAIL if a memory allocation failed
* ARK_ILL_INPUT if an argument had an illegal value.

Notes:
All previously set options are retained but may be updated by calling the appropriate “Set” functions.

If an error occurred, ERKStepReInit () also sends an error message to the error handler function.

5.8.1.9 ERKStep reset function

int ERKStepReset (void *arkode_mem, sunrealtype tR, N_Vector yR)

Resets the current ERKStep time-stepper module state to the provided independent variable value and dependent
variable vector.

Arguments:
* arkode_mem — pointer to the ERKStep memory block.
* {R — the value of the independent variable ¢.
* YR — the value of the dependent variable vector y(tg).
Return value:
e ARK SUCCESS if successful
e ARK_MEM_NULL if the ERKStep memory was NULL
* ARK_MEM_FAIL if a memory allocation failed
* ARK_ILL_INPUT if an argument had an illegal value.

5.8. Using the ERKStep time-stepping module 301



User Documentation for ARKODE, v6.2.1

Notes:

By default the next call to ERKStepEvolve () will use the step size computed by ERKStep prior to calling
ERKStepReset (). To set a different step size or have ERKStep estimate a new step size use ERKStepSe-
tInitStep().

All previously set options are retained but may be updated by calling the appropriate “Set” functions.

If an error occurred, ERKStepReset () also sends an error message to the error handler function.

Deprecated since version 6.1.0: Use ARKodeReset () instead.

5.8.1.10 ERKStep system resize function

int ERKStepResize (void *arkode_mem, N_Vector yR, sunrealtype hscale, sunrealtype tR, ARKVecResizeFn resize,

void *resize_data)

Re-sizes ERKStep with a different state vector but with comparable dynamical time scale.

Arguments:

arkode_mem — pointer to the ERKStep memory block.

YR — the newly-sized solution vector, holding the current dependent variable values y(tg).
hscale — the desired time step scaling factor (i.e. the next step will be of size h*hscale).
R — the current value of the independent variable ¢z (this must be consistent with yR).
resize — the user-supplied vector resize function (of type ARKVecResizeFn().

resize_data — the user-supplied data structure to be passed to resize when modifying internal ERKStep
vectors.

Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ERKStep memory was NULL
e ARK_NO_MALLOC if arkode_mem was not allocated.
* ARK_ILL_INPUT if an argument had an illegal value.

Notes:

If an error occurred, ERKStepResize () also sends an error message to the error handler function.

If inequality constraint checking is enabled a call to ERKStepResize () will disable constraint checking.
A call to ERKStepSetConstraints () is required to re-enable constraint checking.

Deprecated since version 6.1.0: Use ARKodeResize () instead.

5.8.2 Relaxation Methods

This section describes ERKStep-specific user-callable functions for applying relaxation methods with ERKStep. All of
these routines have been deprecated in favor of shared ARKODE-level routines, but this documentation will be retained
for as long as these functions are present

302

Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

5.8.2.1 Enabling or Disabling Relaxation

int ERKStepSetRelaxFn(void *arkode_mem, ARKRelaxFn rfn, ARKRelaxJacFn rjac)

Attaches the user supplied functions for evaluating the relaxation function (rfn) and its Jacobian (rjac).

Both rfn and rjac are required and an error will be returned if only one of the functions is NULL. If both rfn
and rjac are NULL, relaxation is disabled.

Parameters

* arkode_mem — the ERKStep memory structure

* rfn — the user-defined function to compute the relaxation function &(y)

* rjac - the user-defined function to compute the relaxation Jacobian &’(y)
Return values

* ARK_SUCCESS — the function exited successfully

e ARK_MEM_NULL — arkode_mem was NULL

e ARK_ILL_INPUT - an invalid input combination was provided (see the output error message
for more details)

* ARK_MEM_FAIL — a memory allocation failed

Warning

Applying relaxation requires using a method of at least second order with b; > 0. If these conditions are not
satisfied, ERKStepEvolve () will return with an error during initialization.

Note

When combined with fixed time step sizes, ERKStep will attempt each step using the specified step size. If
the step is successful, relaxation will be applied, effectively modifying the step size for the current step. If
the step fails or applying relaxation fails, ERKStepEvolve () will return with an error.

Added in version 5.6.0.

Deprecated since version 6.1.0: Use ARKodeSetRelaxFn() instead.

5.8.2.2 Optional Input Functions

This section describes optional input functions used to control applying relaxation.

int ERKStepSetRelaxEtaFail (void *arkode_mem, sunrealtype eta_rf)

Sets the step size reduction factor applied after a failed relaxation application.
The default value is 0.25. Input values < 0 or > 1 will result in the default value being used.
Parameters
* arkode_mem — the ERKStep memory structure
» eta_rf - the step size reduction factor

Return values

5.8. Using the ERKStep time-stepping module 303



User Documentation for ARKODE, v6.2.1

* ARK_SUCCESS - the value was successfully set

* ARK_MEM_NULL — arkode_mem was NULL

e ARK_RELAX MEM_NULL - the internal relaxation memory structure was NULL
Added in version 5.6.0.
Deprecated since version 6.1.0: Use ARKodeSetRelaxEtaFail() instead.

int ERKStepSetRelaxLowerBound (void *arkode_mem, sunrealtype lower)
Sets the smallest acceptable value for the relaxation parameter.

Values smaller than the lower bound will result in a failed relaxation application and the step will be repeated
with a smaller step size (determined by ERKStepSetRelaxEtaFail()).

The default value is 0.8. Input values < 0 or > 1 will result in the default value being used.
Parameters
* arkode_mem — the ERKStep memory structure
* lower — the relaxation parameter lower bound
Return values
* ARK_SUCCESS — the value was successfully set
e ARK_MEM_NULL - arkode_mem was NULL
e ARK_RELAX_MEM_NULL - the internal relaxation memory structure was NULL
Added in version 5.6.0.
Deprecated since version 6.1.0: Use ARKodeSetRelaxLowerBound() instead.

int ERKStepSetRelaxUpperBound (void *arkode_mem, sunrealtype upper)
Sets the largest acceptable value for the relaxation parameter.

Values larger than the upper bound will result in a failed relaxation application and the step will be repeated with
a smaller step size (determined by ERKStepSetRelaxEtaFail()).

The default value is 1.2. Input values < 1 will result in the default value being used.
Parameters
* arkode_mem — the ERKStep memory structure
* upper — the relaxation parameter upper bound
Return values
* ARK_SUCCESS — the value was successfully set
e ARK_MEM_NULL - arkode_mem was NULL
* ARK_RELAX_MEM_NULL - the internal relaxation memory structure was NULL
Added in version 5.6.0.
Deprecated since version 6.1.0: Use ARKodeSetRelaxUpperBound () instead.

int ERKStepSetRelaxMaxFails (void *arkode_mem, int max_fails)
Sets the maximum number of times applying relaxation can fail within a step attempt before the integration is
halted with an error.

The default value is 10. Input values < 0 will result in the default value being used.

Parameters

304 Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

» arkode_mem — the ERKStep memory structure
* max_fails — the maximum number of failed relaxation applications allowed in a step
Return values
* ARK_SUCCESS - the value was successfully set
* ARK_MEM_NULL — arkode_mem was NULL
e ARK_RELAX MEM_NULL - the internal relaxation memory structure was NULL
Added in version 5.6.0.
Deprecated since version 6.1.0: Use ARKodeSetRelaxMaxFails() instead.

int ERKStepSetRelaxMaxIters (void *arkode_mem, int max_iters)
Sets the maximum number of nonlinear iterations allowed when solving for the relaxation parameter.

If the maximum number of iterations is reached before meeting the solve tolerance (determined by ERKStepSe-
tRelaxResTol () and ERKStepSetRelaxTol()), the step will be repeated with a smaller step size (determined
by ERKStepSetRelaxEtaFail()).

The default value is 10. Input values < 0 will result in the default value being used.
Parameters
» arkode_mem — the ERKStep memory structure
* max_iters — the maximum number of solver iterations allowed
Return values
* ARK_SUCCESS — the value was successfully set
e ARK_MEM_NULL — arkode_mem was NULL
* ARK_RELAX_MEM_NULL — the internal relaxation memory structure was NULL
Added in version 5.6.0.
Deprecated since version 6.1.0: Use ARKodeSetRelaxMaxIters() instead.

int ERKStepSetRelaxSolver (void *arkode_mem, ARKRelaxSolver solver)
Sets the nonlinear solver method used to compute the relaxation parameter.

The default value is ARK_RELAX_NEWTON
Parameters
* arkode_mem — the ERKStep memory structure
* solver - the nonlinear solver to use
Return values
* ARK_SUCCESS — the value was successfully set
* ARK_MEM_NULL — arkode_mem was NULL
e ARK_RELAX MEM_NULL - the internal relaxation memory structure was NULL
* ARK_ILL_INPUT - an invalid solver option was provided
Added in version 5.6.0.

Deprecated since version 6.1.0: Use ARKodeSetRelaxSolver () instead.

5.8. Using the ERKStep time-stepping module 305



User Documentation for ARKODE, v6.2.1

int ERKStepSetRelaxResTol (void *arkode_mem, sunrealtype res_tol)

Sets the nonlinear solver residual tolerance to use when solving (2.63).

If the residual or solution tolerance (see ERKStepSetRelaxMaxIters()) is not reached within the maximum
number of iterations (determined by ERKStepSetRelaxMaxIters()), the step will be repeated with a smaller
step size (determined by ERKStepSetRelaxEtaFail()).

The default value is 4¢ where € is floating-point precision. Input values < 0 will result in the default value being
used.

Parameters
» arkode_mem — the ERKStep memory structure
» res_tol - the nonlinear solver residual tolerance to use
Return values
* ARK_SUCCESS — the value was successfully set
e ARK_MEM_NULL - arkode_mem was NULL
e ARK_RELAX_MEM_NULL - the internal relaxation memory structure was NULL
Added in version 5.6.0.
Deprecated since version 6.1.0: Use ARKodeSetRelaxResTol () instead.

int ERKStepSetRelaxTol (void *arkode_mem, sunrealtype rel_tol, sunrealtype abs_tol)
Sets the nonlinear solver relative and absolute tolerance on changes in » when solving (2.63).

If the residual (see ERKStepSetRelaxResTol()) or solution tolerance is not reached within the maximum
number of iterations (determined by ERKStepSetRelaxMaxIters()), the step will be repeated with a smaller
step size (determined by ERKStepSetRelaxEtaFail()).

The default relative and absolute tolerances are 4¢ and 10~ 4, respectively, where € is floating-point precision.
Input values < 0 will result in the default value being used.

Parameters
» arkode_mem — the ERKStep memory structure
» rel_tol — the nonlinear solver relative solution tolerance to use
» abs_tol - the nonlinear solver absolute solution tolerance to use
Return values
* ARK_SUCCESS — the value was successfully set
e ARK_MEM_NULL - arkode_mem was NULL
o ARK_RELAX_MEM_NULL - the internal relaxation memory structure was NULL
Added in version 5.6.0.

Deprecated since version 6.1.0: Use ARKodeSetRelaxTol () instead.

306 Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

5.8.2.3 Optional Output Functions
This section describes optional output functions used to retrieve information about the performance of the relaxation
method.

int ERKStepGetNumRelaxFnEvals (void *arkode_mem, long int *r_evals)

Get the number of times the user’s relaxation function was evaluated.
Parameters
* arkode_mem — the ERKStep memory structure
* r_evals - the number of relaxation function evaluations
Return values
* ARK_SUCCESS - the value was successfully set
e ARK_MEM_NULL - arkode_mem was NULL
e ARK_RELAX MEM_NULL - the internal relaxation memory structure was NULL
Added in version 5.6.0.
Deprecated since version 6.1.0: Use ARKodeGetNumRelaxFnEvals () instead.

int ERKStepGetNumRelaxJacEvals (void *arkode_mem, long int *J_evals)
Get the number of times the user’s relaxation Jacobian was evaluated.

Parameters
» arkode_mem — the ERKStep memory structure
* J_evals — the number of relaxation Jacobian evaluations
Return values
* ARK_SUCCESS — the value was successfully set
e ARK_MEM_NULL - arkode_mem was NULL
e ARK_RELAX_MEM_NULL - the internal relaxation memory structure was NULL
Added in version 5.6.0.
Deprecated since version 6.1.0: Use ARKodeGetNumRelaxJacEvals () instead.

int ERKStepGetNumRelaxFails (void *arkode_mem, long int *fails)

Get the total number of times applying relaxation failed.

The counter includes the sum of the number of nonlinear solver failures (see ERKStepGetNumRelaxSolve-
Fails()) and the number of failures due an unacceptable relaxation value (see ERKStepSetRelaxLower-
Bound () and ERKStepSetRelaxUpperBound()).

Parameters
» arkode_mem — the ERKStep memory structure
o fails - the total number of failed relaxation attempts
Return values
» ARK_SUCCESS - the value was successfully set
e ARK_MEM_NULL - arkode_mem was NULL
e ARK_RELAX MEM_NULL - the internal relaxation memory structure was NULL

5.8. Using the ERKStep time-stepping module 307



User Documentation for ARKODE, v6.2.1

Added in version 5.6.0.
Deprecated since version 6.1.0: Use ARKodeGetNumRelaxFails() instead.

int ERKStepGetNumRelaxBoundFails (void *arkode_mem, long int *fails)
Get the number of times the relaxation parameter was deemed unacceptable.

Parameters
 arkode_mem — the ERKStep memory structure
o fails - the number of failures due to an unacceptable relaxation parameter value
Return values
* ARK_SUCCESS - the value was successfully set
e ARK_MEM_NULL - arkode_mem was NULL
e ARK_RELAX MEM_NULL - the internal relaxation memory structure was NULL
Added in version 5.6.0.
Deprecated since version 6.1.0: Use ARKodeGetNumRelaxBoundFails () instead.

int ERKStepGetNumRelaxSolveFails (void *arkode_mem, long int *fails)

Get the number of times the relaxation parameter nonlinear solver failed.
Parameters
* arkode_mem — the ERKStep memory structure
» fails - the number of relaxation nonlinear solver failures
Return values
* ARK_SUCCESS — the value was successfully set
* ARK_MEM_NULL — arkode_mem was NULL
e ARK_RELAX_MEM_NULL - the internal relaxation memory structure was NULL
Added in version 5.6.0.
Deprecated since version 6.1.0: Use ARKodeGetNumRelaxSolveFails () instead.

int ERKStepGetNumRelaxSolveIters (void *arkode_mem, long int *iters)

Get the number of relaxation parameter nonlinear solver iterations.
Parameters
» arkode_mem — the ERKStep memory structure
* iters - the number of relaxation nonlinear solver iterations
Return values
* ARK_SUCCESS - the value was successfully set
* ARK_MEM_NULL - arkode_mem was NULL
e ARK_RELAX MEM_NULL - the internal relaxation memory structure was NULL
Added in version 5.6.0.

Deprecated since version 6.1.0: Use ARKodeGetNumRelaxSolvelIters() instead.

308 Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

5.9 Using the ForcingStep time-stepping module

This section is concerned with the use of the ForcingStep time-stepping module for the solution of initial value problems
(IVPs) in a C or C++ language setting. Usage of ForcingStep follows that of the rest of ARKODE, and so in this section
we primarily focus on those usage aspects that are specific to ForcingStep. A skeleton of a program using ForcingStep
follows essentially the same structure as SplittingStep (see §5.12.1).

5.9.1 ForcingStep User-callable functions

This section describes the ForcingStep-specific functions that may be called by the user to setup and then solve an IVP
using the ForcingStep time-stepping module.

As discussed in the main ARKODE user-callable function introduction, each of ARKODE’s time-stepping modules
clarifies the categories of user-callable functions that it supports. ForcingStep does not support any of the categories
beyond the functions that apply for all time-stepping modules.

5.9.1.1 ForcingStep initialization functions

void *ForcingStepCreate (SUNStepper stepperl, SUNStepper stepper2, sunrealtype t0, N_Vector y0, SUNContext
sunctx)

This function allocates and initializes memory for a problem to be solved using the ForcingStep time-stepping
module in ARKODE.

Parameters

» stepperl — A SUNStepper to integrate partition one. At minimum, it must implement
the SUNStepper_Evolve(), SUNStepper_Reset (), and SUNStepper_SetStopTime()
operations.

* stepper2 — A SUNStepper to integrate partition two including the forcing from partition
one. At minimum, it must implement the SUNStepper_Evolve(), SUNStepper_Reset(),
SUNStepper_SetStopTime (), and SUNStepper_SetForcing () operations.

¢ t0 - The initial value of ¢.
* yO0 — The initial condition vector y(¢o).
* sunctx — The SUNContext object (see §4.2)

Returns
If successful, a pointer to initialized problem memory of type void*, to be passed to all user-
facing ForcingStep routines listed below. If unsuccessful, a NULL pointer will be returned, and
an error message will be printed to stderr.

Example usage:

/* inner ARKODE objects for integrating individual partitions */
void *partition_mem[] = {NULL, NULL};

/* SUNSteppers to wrap the inner ARKStep objects */
SUNStepper steppers[] = {NULL, NULL};

/% create ARKStep objects, setting right-hand side functions and the
initial condition */
partition_mem[0] = ARKStepCreate(fel, fil, t0, y0, sunctx);

(continues on next page)

5.9. Using the ForcingStep time-stepping module 309



User Documentation for ARKODE, v6.2.1

(continued from previous page)

partition_mem[1] = ARKStepCreate(fe2, fi2, t0®, y0, sunctx);

/* setup ARKStep */

/% create SUNStepper wrappers for the ARKStep memory blocks */
flag = ARKodeCreateSUNStepper(partition_mem[0], &stepper[0]);
flag = ARKodeCreateSUNStepper(partition_mem[1], &stepper[1]);

/% create a ForcingStep object */
arkode_mem = ForcingStepCreate(steppers[0], steppers[l1], t®, y0, sunctx);

Example codes:

* examples/arkode/C_serial/ark_analytic_partitioned.c

Added in version 6.2.0.

5.9.1.2 Optional output functions

int ForcingStepGetNumEvolves (void *arkode_mem, int partition, long int *evolves)

Returns the number of times the SUNStepper for the given partition index has been evolved (so far).
Parameters
* arkode_mem — pointer to the ForcingStep memory block.

» partition - index of the partition (0 or 1) or a negative number to indicate the total number
across both partitions.

* evolves — number of SUNStepper evolves.
Return values
» ARK_SUCCESS - if successful
* ARK_MEM_NULL - if the ForcingStep memory was NULL
e ARK_ILL_INPUT - if partition was out of bounds
Added in version 6.2.0.

5.9.1.3 ForcingStep re-initialization function

To reinitialize the ForcingStep module for the solution of a new problem, where a prior call to ForcingStepCreate ()
has been made, the user must call the function ForcingStepReInit () and re-initialize each SUNStepper. The new
problem must have the same size as the previous one. This routine retains the current settings for all ForcingStep
module options and performs the same input checking and initializations that are done in ForcingStepCreate (), but
it performs no memory allocation as it assumes that the existing internal memory is sufficient for the new problem. A
call to this re-initialization routine deletes the solution history that was stored internally during the previous integration,
and deletes any previously-set zsfop value specified via a call to ARKodeSetStopTime (). Following a successful call
to ForcingStepReInit (), call ARKodeEvolve () again for the solution of the new problem.

One important use of the ForcingStepReInit () function is in the treating of jump discontinuities in the RHS func-
tion. Except in cases of fairly small jumps, it is usually more efficient to stop at each point of discontinuity and restart
the integrator with a readjusted ODE model, using a call to this routine. To stop when the location of the discontinuity

310 Chapter 5. Using ARKODE



User Documentation for ARKODE, v6.2.1

is known, simply make that location a value of tout. To stop when the location of the discontinuity is determined by
the solution, use the rootfinding feature. In either case, it is critical that the RHS function not incorporate the disconti-
nuity, but rather have a smooth extension over the discontinuity, so that the step across it (and subsequent rootfinding,
if used) can be done efficiently. Then use a switch within the RHS function (communicated through user_data) that
can be flipped between the stopping of the integration and the restart, so that the restarted problem uses the new values
(which have jumped). Similar comments apply if there is to be a jump in the dependent variable vector.

Another use of ForcingStepReInit () is changing the partitioning of the ODE and the SUNStepper objects used to
evolve each partition.

int ForcingStepReInit (void *arkode_mem, SUNStepper stepperl, SUNStepper stepper2, sunrealtype t0,
N_Vector y0)

Provides required problem specifications and re-initializes the ForcingStep time-stepper module.
Parameters
» arkode_mem — pointer to the ForcingStep memory block.

* stepperl — A SUNStepper to integrate partition one. At minimum, it must implement
the SUNStepper_Evolve(), SUNStepper_Reset (), and SUNStepper_SetStopTime ()
operations.

* stepper2 — A SUNStepper to integrate partition two including the forcing from partition
one. At minimum, it must implement the SUNStepper_Evolve(), SUNStepper_Reset (),
SUNStepper_SetStopTime (), and SUNStepper_SetForcing () operations.

* t0 — The initial value of ¢.
e y0 — The initial condition vector y(tg).
Return values
» ARK_SUCCESS - if successful
e ARK_MEM_NULL - if the ForcingStep memory was NULL
* ARK_MEM_FAIL - if a memory allocation failed
e ARK_ILL_INPUT - if an argument has an illegal value

Warning

This function does not perform any re-initialization of the SUNStepper objects. It is up to the user to do this,
if necessary.

Note

All previously set options are retained but may be updated by calling the appropriate “Set” functions.

Added in version 6.2.0.

5.9. Using the ForcingStep time-stepping module 311



User Documentation for ARKODE, v6.2.1

5.10 Using the LSRKStep time-stepping module

This section is concerned with the use of the LSRKStep time-stepping module for the solution of initial value problems
(IVPs) in a C or C++ language setting. Usage of LSRKStep follows that of the rest of ARKODE, and so in this section
we primarily focus on those usage aspects that are specific to LSRKStep.

5.10.1 LSRKStep User-callable functions

This section describes the LSRKStep-specific functions that may be called by the user to setup and then solve an IVP
using the LSRKStep time-stepping module. As mentioned in Section §5.3, shared ARKODE-level routines may be
used for the large majority of LSRKStep configuration and use. In this section, we describe only those routines that are
specific to LSRKStep.

As discussed in the main ARKODE user-callable function introduction, each of ARKODE’s time-stepping modules
clarifies the categories of user-callable functions that it supports. LSRKStep supports the following categories:

 temporal adaptivity

LSRKStep does not have forcing function support when converted to a SUNStepper or MRIStepInnerStepper. See
ARKodeCreateSUNStepper () and ARKStepCreateMRIStepInnerStepper () for additional details.

5.10.1.1 LSRKStep initialization functions

void *LSRKStepCreateSTS (ARKRhsFn ths, sunrealtype t0, N_Vector y0, SUNContext sunctx);

This function allocates and initializes memory for a problem to be solved using STS methods from the LSRKStep
time-stepping module in ARKODE.

Arguments:
* rhs — the name of the C function (of type ARKRhsFn()) defining the right-hand side function.
* 10 — the initial value of ¢.
* y0 — the initial condition vector y(tg).
* sunctx —the SUNContext object (see §4.2)

Return value:
If successful, a pointer to initialized problem memory of type void*, to be passed to all user-facing LSRK-
Step routines listed below. If unsuccessful, a NULL pointer will be returned, and an error message will be
printed to stderr.

void *LSR